\(\displaystyle{2}^{{{3}}}={2}\times{2}\times{2}={4}\times{2}={8}{\quad\text{and}\quad}{3}^{{{3}}}={3}\times{3}\times{3}={9}\times{3}={27}.\)
Therefore \(\displaystyle{23}\times{33}={8}\times{27}={216}.\)
You could also find the value using the Power of a Product Rule \(\displaystyle{\left({a}{b}\right)}{m}={a}^{{{m}}}\times{b}^{{{m}}}:\)

\(\displaystyle{2}^{{{3}}}\times{3}^{{{3}}}={\left({2}\times{3}\right)}^{{{3}}}={6}^{{{3}}}={6}\times{6}\times{6}={36}\times{6}={216}\)

\(\displaystyle{2}^{{{3}}}\times{3}^{{{3}}}={\left({2}\times{3}\right)}^{{{3}}}={6}^{{{3}}}={6}\times{6}\times{6}={36}\times{6}={216}\)