Below is data collected from the growth of two different trees over time. Each tree was planted in 1960, and the tree's height has been collected every ten years. What type of function is the growth of Tree A? How can you tell? What type of function is the growth of Tree B? How can you tell? Write an equation for each function of the trees' growth over time. For time, you may use x=0 for 1960. Compare the growth rate for each of the trees. Compare the starting heights of each of the trees. When will Tree A's height exceed Tree B's height?

Question
Below is data collected from the growth of two different trees over time. Each tree was planted in 1960, and the tree's height has been collected every ten years.
What type of function is the growth of Tree A? How can you tell?
What type of function is the growth of Tree B? How can you tell?
Write an equation for each function of the trees' growth over time. For time, you may use x=0 for 1960.
Compare the growth rate for each of the trees.
Compare the starting heights of each of the trees.
When will Tree A's height exceed Tree B's height?

2020-11-25
Tree A is curved which means it could be an exponential function. The yy-coordinates are 10, 20, 40, and 80. Since the yy-coordinates are doubling every 10 years, then the function is exponential since exponential functions have a constant factor (the number you multiply by).
2. Unlike the yy-coordinates for Tree A, the yy-coordinates for Tree B are not increasing by a constant factor. Since 37−12=25, 62−37=25, and 87−62=25, then the yy-coordinates for Tree B are increasing by a constant amount of 25. This means the function has a constant rate of change of 25 feet per 10 years. The function is then linear since linear functions have constant rates of change.
Exponential functions are of the form y=a⋅b^(x/c​) where aa is the amount when x=0, b is the growth factor, and c is how often the amount changes by the growth factor. Since the y-coordinate is 10 when x=0 (the year 1960), then a=10. Since the y-coordinates are doubling every 10 years, then b=2 and c=10. The function for Tree A is then y=10⋅2^(x/10).
Linear functions are of the form y=mx+b where mm is the constant rate of change and bb is the y-intercept. Since the rate of change is 25 feet per 10 years, then m=25/10=2.5m. Since the height is 12 feet when x=0 (the year 1960), then b=12. The function for Tree B is then y=2.5x+12.
From the previous problems, Tree A is growing by a constant factor of 2 every 10 years and Tree B is growing by a constant amount of 25 feet every 10 years. In the long term, Tree A has a greater growth rate than Tree B since growing by a constant factor will give greater increases than growing by a constant amount as time increases.
5. From the graph, the initial height of Tree A was 10 feet in 1960. From the table, the initial height of Tree B was 12 feet in 1960. Therefore, Tree B had a greater initial height.
6. From the graph and table, in 1990 Tree A had a height of 80 feet and Tree B had a height of 87 feet. Tree A's height will then exceed Tree B's height sometime after 1990. Since 1990 is 30 years after 1960, then x=30x=30 corresponds to 1990. Make a table finding the heights of the trees after 1990:
The height of Tree A will then exceed the height of Tree B after x=33x=33 years which corresponds to 1993 1993 ​ .

Relevant Questions

A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of $$25^{\circ}F$$. However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to $$25^{\circ}F$$. One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a $$5\%$$ level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
$$H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}$$
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
$$df_{N} = ?$$
$$df_{D} = ?$$
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
a student is speeding down route 11 in his fancy red Porschewhen his radar system warns him of an obstacle 400 ft ahead. heimmediately applies the brakes, starts to slow down and spots askunk in the road directly ahead of him. the "black box" in thePorsche records the car's speed every 2 seconds , producing thefollowing table. the speed decreases throughout the 10 seconds ittakes to stop, although not necessarily at a uniform rate.
time since brakes applied (sec) 0 2 4 6 8 10
speed(ft/sec) 100 80 50 25 10 0
a) what is your best estimate of the total distance thestudent's car travelled before coming to rest?
b) which one of the following statements can you justify fromthe information given?
1) the car stopped before getting to the skunk.
2) the " black box" data is inconclusive. the skunk may or maynot have been hit.
3) the skunk was hit by the car.
Several models have been proposed to explain the diversification of life during geological periods. According to Benton (1997), The diversification of marine families in the past 600 million years (Myr) appears to have followed two or three logistic curves, with equilibrium levels that lasted for up to 200 Myr. In contrast, continental organisms clearly show an exponential pattern of diversification, and although it is not clear whether the empirical diversification patterns are real or are artifacts of a poor fossil record, the latter explanation seems unlikely. In this problem, we will investigate three models fordiversification. They are analogous to models for populationgrowth, however, the quantities involved have a differentinterpretation. We denote by N(t) the diversification function,which counts the number of taxa as a function of time, and by rthe intrinsic rate of diversification.
(a) (Exponential Model) This model is described by $$\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{e}}}{N}\ {\left({8.86}\right)}.$$ Solve (8.86) with the initial condition N(0) at time 0, and show that $$\displaystyle{r}_{{{e}}}$$ can be estimated from $$\displaystyle{r}_{{{e}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ {\left({8.87}\right)}$$
(b) (Logistic Growth) This model is described by $$\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{l}}}{N}\ {\left({1}\ -\ {\frac{{{N}}}{{{K}}}}\right)}\ {\left({8.88}\right)}$$ where K is the equilibrium value. Solve (8.88) with the initial condition N(0) at time 0, and show that $$\displaystyle{r}_{{{l}}}$$ can be estimated from $$\displaystyle{r}_{{{l}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{K}\ -\ {N}{\left({0}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ +\ {\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{K}\ -\ {N}{\left({t}\right)}}}}\right]}\ {\left({8.89}\right)}$$ for $$\displaystyle{N}{\left({t}\right)}\ {<}\ {K}.$$
(c) Assume that $$\displaystyle{N}{\left({0}\right)}={1}$$ and $$\displaystyle{N}{\left({10}\right)}={1000}.$$ Estimate $$\displaystyle{r}_{{{e}}}$$ and $$\displaystyle{r}_{{{l}}}$$ for both $$\displaystyle{K}={1001}$$ and $$\displaystyle{K}={10000}.$$
(d) Use your answer in (c) to explain the following quote from Stanley (1979): There must be a general tendency for calculated values of $$\displaystyle{\left[{r}\right]}$$ to represent underestimates of exponential rates,because some radiation will have followed distinctly sigmoid paths during the interval evaluated.
(e) Explain why the exponential model is a good approximation to the logistic model when $$\displaystyle\frac{{N}}{{K}}$$ is small compared with 1.
Anthony is working for an engineering company that is building a Ferris wheel to be used at county fairs. He wants to create an algebraic model that describes the height of a rider on the wheel in terms of time. He knows that the diameter of the wheel will be 90 feet and that the axle will be built to stand 55 feet off the ground. He also knows they plan to set the wheel to make one rotation every 60 seconds. Write at least two equations that model the height of a rider in terms of t, seconds on the ride, assuming that when t = 0, the rider is at his or her lowest possible height. Explain why both equations are accurate.
Part 2:One of Anthony's co-workers says, "Sine and cosine are basically the same thing." Anthony is not so sure, and can see things either way. Provide one piece of evidence that would confirm the co-worker's point of view. Provide one piece of evidence that would refute it. Hint: It may be helpful to consider the domain and range of different functions, as well as the relationship of each of these functions to triangles in the unit circle
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
A linear regression was performed on a bivariate data set with variables x and y. Analysis by a computer software package included the following outputs:
Sample Size: $$n=15$$
Regression Equation: $$y\hat{e} =0.359 - 1.264x$$
Coefficient of Determination: r square = 0.915
Sums of Squares :$$SSy = 35.617. SSex = 32.589, SSresid = 3.028$$
a. Calculate the standard error Se.
b. write a sentence interpreting the value of rsquare.
c.What is the value of Pearson's correlation coefficient?
d. Determine whether the variables x and y are significant using a $$5\%$$ significance level. You may assume a simple random sample from a bivariate normal populaton.
A random sample of $$\displaystyle{n}_{{1}}={16}$$ communities in western Kansas gave the following information for people under 25 years of age.
$$\displaystyle{X}_{{1}}:$$ Rate of hay fever per 1000 population for people under 25
$$\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}$$
A random sample of $$\displaystyle{n}_{{2}}={14}$$ regions in western Kansas gave the following information for people over 50 years old.
$$\displaystyle{X}_{{2}}:$$ Rate of hay fever per 1000 population for people over 50
$$\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}$$
(i) Use a calculator to calculate $$\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.$$ (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use $$\displaystyle\alpha={0.05}.$$
(a) What is the level of significance?
State the null and alternate hypotheses.
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}$$
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value $$\displaystyle>{0.250}$$
$$\displaystyle{0.125}<{P}-\text{value}<{0},{250}$$
$$\displaystyle{0},{050}<{P}-\text{value}<{0},{125}$$
$$\displaystyle{0},{025}<{P}-\text{value}<{0},{050}$$
$$\displaystyle{0},{005}<{P}-\text{value}<{0},{025}$$
P-value $$\displaystyle<{0.005}$$
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
factor in determining the usefulness of an examination as a measure of demonstrated ability is the amount of spread that occurs in the grades. If the spread or variation of examination scores is very small, it usually means that the examination was either too hard or too easy. However, if the variance of scores is moderately large, then there is a definite difference in scores between "better," "average," and "poorer" students. A group of attorneys in a Midwest state has been given the task of making up this year's bar examination for the state. The examination has 500 total possible points, and from the history of past examinations, it is known that a standard deviation of around 60 points is desirable. Of course, too large or too small a standard deviation is not good. The attorneys want to test their examination to see how good it is. A preliminary version of the examination (with slight modifications to protect the integrity of the real examination) is given to a random sample of 20 newly graduated law students. Their scores give a sample standard deviation of 70 points. Using a 0.01 level of significance, test the claim that the population standard deviation for the new examination is 60 against the claim that the population standard deviation is different from 60.
(a) What is the level of significance?
State the null and alternate hypotheses.
$$H_{0}:\sigma=60,\ H_{1}:\sigma\ <\ 60H_{0}:\sigma\ >\ 60,\ H_{1}:\sigma=60H_{0}:\sigma=60,\ H_{1}:\sigma\ >\ 60H_{0}:\sigma=60,\ H_{1}:\sigma\ \neq\ 60$$
(b) Find the value of the chi-square statistic for the sample. (Round your answer to two decimal places.)
What are the degrees of freedom?
What assumptions are you making about the original distribution?
We assume a binomial population distribution.We assume a exponential population distribution. We assume a normal population distribution.We assume a uniform population distribution.
The close connection between logarithm and exponential functions is used often by statisticians as they analyze patterns in data where the numbers range from very small to very large values. For example, the following table shows values that might occur as a bacteria population grows according to the exponential function P(t)=50(2t):
Time t (in hours)012345678 Population P(t)501002004008001,6003,2006,40012,800
a. Complete another row of the table with values log (population) and identify the familiar function pattern illustrated by values in that row.
b. Use your calculator to find log 2 and see how that value relates to the pattern you found in the log P(t) row of the data table.
c. Suppose that you had a different set of experimental data that you suspected was an example of exponential growth or decay, and you produced a similar “third row” with values equal to the logarithms of the population data.
How could you use the pattern in that “third row” to figure out the actual rule for the exponential growth or decay model?
Michelle is studying the relationship between the hours worked (per week) and time spent reading (per day) and has collected the data shown in the table. The line of best fit for the data is $$y=−0.79x+98.8$$.