Below is data collected from the growth of two different trees over time. Each tree was planted in 1960, and the tree's height has been collected ever

Kaycee Roche 2020-11-24 Answered
Below is data collected from the growth of two different trees over time. Each tree was planted in 1960, and the trees
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

joshyoung05M
Answered 2020-11-25 Author has 97 answers

Tree A is curved which means it could be an exponential function. The yy-coordinates are 10, 20, 40, and 80. Since the yy-coordinates are doubling every 10 years, then the function is exponential since exponential functions have a constant factor (the number you multiply by).
2. Unlike the yy-coordinates for Tree A, the yy-coordinates for Tree B are not increasing by a constant factor. Since 3712=25,6237=25, and 8762=25, then the yy-coordinates for Tree B are increasing by a constant amount of 25. This means the function has a constant rate of change of 25 feet per 10 years. The function is then linear since linear functions have constant rates of change.
Exponential functions are of the form y=abx/c where aa is the amount when x=0, b is the growth factor, and c is how often the amount changes by the growth factor. Since the y-coordinate is 10 when x=0 (the year 1960), then a=10. Since the y-coordinates are doubling every 10 years, then b=2 and c=10. The function for Tree A is then y=102x/10.
Linear functions are of the form y=mx+b where mm is the constant rate of change and bb is the y-intercept. Since the rate of change is 25 feet per 10 years, then m=25/10=2.5m. Since the height is 12 feet when x=0 (the year 1960), then b=12. The function for Tree B is then y=2.5x+12.
From the previous problems, Tree A is growing by a constant factor of 2 every 10 years and Tree B is growing by a constant amount of 25 feet every 10 years. In the long term, Tree A has a greater growth rate than Tree B since growing by a constant factor will give greater increases than growing by a constant amount as time increases.
5. From the graph, the initial height of Tree A was 10 feet in 1960. From the table, the initial height of Tree B was 12 feet in 1960. Therefore, Tree B had a greater initial height.
6. From the graph and table, in 1990 Tree A had a height of 80 feet and Tree B had a height of 87 feet. Tree A's height will then exceed Tree B's height sometime after 1990. Since 1990 is 30 years after 1960, then x=30x=30 corresponds to 1990. Make a table finding the heights of the trees after 1990:
The height of Tree A will then exceed the height of Tree B after x=33x=33 years which corresponds to 1993 1993 ​ .

Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

You might be interested in

asked 2021-02-23
Interpreting z-scores: Complete the following statements using your knowledge about z-scores.
a. If the data is weight, the z-score for someone who is overweight would be
-positive
-negative
-zero
b. If the data is IQ test scores, an individual with a negative z-score would have a
-high IQ
-low IQ
-average IQ
c. If the data is time spent watching TV, an individual with a z-score of zero would
-watch very little TV
-watch a lot of TV
-watch the average amount of TV
d. If the data is annual salary in the U.S and the population is all legally employed people in the U.S., the z-scores of people who make minimum wage would be
-positive
-negative
-zero
asked 2022-02-11
How do you write 9950 as a percentage?
asked 2022-03-27
Construct a sample (with at least two differentvalues in the set) of 66 measurements whose median is smaller than the smallest measurement in the sample. If this is not possible, indicate "Cannot create sample".
asked 2022-05-21
I need to include measurement uncertainties in this testing process. So I have a theoretical value A that is stated without uncertainty. My measured data gives me this rate value B with uncerainty ΔB. It used to be validated (B was stated without uncertainty) as if B < const*A then test passes.
I found this consistensy check that is used for comparing values with uncertainties (if ∣A - B∣ ΔA + ΔB∣ is true, then the compared values are consistent with each other within experimental uncertainty), so that would mean that in my situation, I just need to make sure that the difference ∣A-B∣ is smaller than ΔB. 1st question - if it doesn't pass this consistency test, are there two not comparable?
And second, what should I do next? How do I compare const*A and B ± ΔB? I guess the core of the answer will be in overlaping errors, but couldn't have found much on it.
asked 2022-05-07
Perform the operations in the correct order: 12-6/15+6*5-9.
asked 2020-12-17
Write a real-world problem that could be represented by the bar diagram below. Then solve your problem.
asked 2021-09-24
How do I solve improper fractions?
a) 525=?
b) 418=?
c) 978=?

New questions