# Martha types a 4-digit code into a keypad to unlock her car doors. The code uses the numbers 1 and 0. If the digits are selected at random, what is the probability of getting a code with exactly three 0 s? Enter your answer as a simplified fraction. The probability of getting three 0 's is _____.

Question
Factors and multiples
Martha types a 4-digit code into a keypad to unlock her car doors. The code uses the numbers 1 and 0. If the digits are selected at random, what is the probability of getting a code with exactly three 0 s? Enter your answer as a simplified fraction. The probability of getting three 0 's is _____.

2021-01-28
The probability of getting a code with exactly three 0s is number of codes with three 0s/total number of codes The Fundamental Principle of Counting states that if there are mm ways for one event to occur and nn ways for a second event to occur, then there are mnmn ways of both events occurring.
By the Fundamental Principle of Counting, to find the total number of possible codes we need to multiply the number of options there are for each digit. Since each digit can be either a 1 or a 0, then there are 2 options for each digit. Since the code is 4 digits, then the total possible number of codes is $$\displaystyle{2}\times{2}\times{2}\times{2}={2}^{{{4}}}={16}$$
The possible codes with three 0s are 0001, 0010, 0100, and 1000. There are then 4 possible codes with three 0s.
The probability of getting a code with exactly three 0s is then $$\displaystyle{\frac{{{4}}}{{{16}}}}$$ which simplifies to $$\displaystyle{\frac{{{1}}}{{{4}}}}$$

### Relevant Questions

A middle school assigned a four digit ID number to each student. The number is made from the digits 123 and four and no digit is repeated if assigned randomly, what is the probability that an ID number will end with the number three
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (sd = 4.5 seconds) and the expected populations for an average of 7.5 seconds (sd = 4.2 seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____ B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________ C) Find the p-value. Round your answer to three decimal places. p-value =
Give a full and correct answer Why is it important that a sample be random and representative when conducting hypothesis testing? Representative Sample vs. Random Sample: An Overview Economists and researchers seek to reduce sampling bias to near negligible levels when employing statistical analysis. Three basic characteristics in a sample reduce the chances of sampling bias and allow economists to make more confident inferences about a general population from the results obtained from the sample analysis or study: * Such samples must be representative of the chosen population studied. * They must be randomly chosen, meaning that each member of the larger population has an equal chance of being chosen. * They must be large enough so as not to skew the results. The optimal size of the sample group depends on the precise degree of confidence required for making an inference. Representative sampling and random sampling are two techniques used to help ensure data is free of bias. These sampling techniques are not mutually exclusive and, in fact, they are often used in tandem to reduce the degree of sampling error in an analysis and allow for greater confidence in making statistical inferences from the sample in regard to the larger group. Representative Sample A representative sample is a group or set chosen from a larger statistical population or group of factors or instances that adequately replicates the larger group according to whatever characteristic or quality is under study. A representative sample parallels key variables and characteristics of the large society under examination. Some examples include sex, age, education level, socioeconomic status (SES), or marital status. A larger sample size reduced sampling error and increases the likelihood that the sample accurately reflects the target population. Random Sample A random sample is a group or set chosen from a larger population or group of factors of instances in a random manner that allows for each member of the larger group to have an equal chance of being chosen. A random sample is meant to be an unbiased representation of the larger population. It is considered a fair way to select a sample from a larger population since every member of the population has an equal chance of getting selected. Special Considerations: People collecting samples need to ensure that bias is minimized. Representative sampling is one of the key methods of achieving this because such samples replicate as closely as possible elements of the larger population under study. This alone, however, is not enough to make the sampling bias negligible. Combining the random sampling technique with the representative sampling method reduces bias further because no specific member of the representative population has a greater chance of selection into the sample than any other. Summarize this article in 250 words.
Marks will be awarded for accuracy in the rounding of final answers where you are asked to round. To ensure that you receive these marks, take care in keeping more decimals in your intermediate steps than what the question is asking you to round your final answer to.
A fair 7 -sided die with the numbers 1 trough 7 is rolled five times. Express each of your answers as a decimal rounded to 3 decimal places.
(a) What is the probability that exactly one 3 is rolled?
(b) What is the probability that at least one 3 is rolled?
(c) What is the probability that exactly four of the rolls show an even number?
Suppose that 17% of people own dogs. If you pick two people at random, what is the probability that they both own a dog? Give your answer as a decimal (to at least 3 places) or fraction Is it correct answer 0.029?
The following table gives a two-way classification of all basketball players at a state university who began their college careers between 2004 and 2008, based on gender and whether or not they graduated.
$$\begin{array}{|c|c|c|}\hline &\text{Graduated}&\text{Did not Graduate}\\\hline \text{Male} &129&51\\ \hline \text{Female}&134&36 \\ \hline \end{array}\\$$
If one of these players is selected at random, find the following probability.
$$P(\text{graduated or male})=$$ Enter your answer in accordance to the question statement
Researchers wanted to compare the effectiveness of a water softener used with a filtering process with a water softener used without filtering. Ninety locations were randomly divided into two groups of equal size. Group A locations used a water softener and the filtering process, while group B used only the water softener. At the end of three months, a water sample was tested at each location for its level of softness. (Water softness was measured on a scale of 1 to 5, with 5 being the softest water.) The results were as follows: Group A (water softener and filtering) $$\displaystyle{x}_{{1}}={2.1}$$
$$\displaystyle{s}_{{1}}={0.7}$$ Group B (water softener only) $$\displaystyle{x}_{{2}}={1.7}$$
$$\displaystyle{s}_{{2}}={0.4}$$ Determine, at the 90% confidence level, whether there is a difference between the two types of treatments.
1. Find each of the requested values for a population with a mean of $$? = 40$$, and a standard deviation of $$? = 8$$ A. What is the z-score corresponding to $$X = 52?$$ B. What is the X value corresponding to $$z = - 0.50?$$ C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of $$M=42$$ for a sample of $$n = 4$$ scores? E. What is the z-scores corresponding to a sample mean of $$M= 42$$ for a sample of $$n = 6$$ scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: $$a. -2.00 b. 1.25 c. 3.50 d. -0.34$$ 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with $$\mu = 78$$ and $$\sigma = 12$$. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: $$82, 74, 62, 68, 79, 94, 90, 81, 80$$. 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about $$12 (\mu = 42, \sigma = 12)$$. You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is$44.50 from tips. Test for a difference between this value and the population mean at the $$\alpha = 0.05$$ level of significance.
$$\begin{array} {c|cc|c} & \text { Female } & \text { Male } & \text { Total } \\ \hline \text { Almost no chance } & 96 & 98 & 194 \\ \hline \text { Some chance but probably not } & 426 & 286 & 712 \\ \hline \text { A 50-50 chance } & 696 & 720 & 1416 \\ \hline \text { A good chance } & 663 & 758 & 1421 \\ \hline \text { Almost certain } & 486 & 597 & 1083 \\ \hline \text { Total } & 2367 & 2459 & 4826 \end{array}$$