Question

In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to cons

Significance tests
ANSWERED
asked 2021-01-31
In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to construct a confidence interval from sample data. Let * be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean:
For a two-tailed hypothesis test with level of significance a and null hypothesis \(H_{0} : \mu = k\) we reject Ho whenever k falls outside the \(c = 1 — \alpha\) confidence interval for \(\mu\) based on the sample data. When A falls within the \(c = 1 — \alpha\) confidence interval. we do reject \(H_{0}\).
For a one-tailed hypothesis test with level of significance Ho : \(\mu = k\) and null hypothesiswe reject Ho whenever A falls outsidethe \(c = 1 — 2\alpha\) confidence interval for p based on the sample data. When A falls within the \(c = 1 — 2\alpha\) confidence interval, we do not reject \(H_{0}\).
A corresponding relationship between confidence intervals and two-tailed hypothesis tests is also valid for other parameters, such as p, \(\mu1 — \mu_2,\ and\ p_{1}, - p_{2}\).
(a) Consider the hypotheses \(H_{0} : \mu_{1} — \mu_{2} = O\ and\ H_{1} : \mu_{1} — \mu_{2} \neq\) Suppose a 95% confidence interval for \(\mu_{1} — \mu_{2}\) contains only positive numbers. Should you reject the null hypothesis when \(\alpha = 0.05\)? Why or why not?

Answers (1)

2021-02-01
The level of significance, \(\alpha = 0.05\)
The null hypothesis:
\(H_{0}: \mu_{1} - \mu_{2} =0\)
The alternative hypothesis:
\(H_{0}: \mu_{1} - \mu_{2} \neq0\)
Here, from above hypothesis D = 0 and we know that for a two-tailed hypothesis test with level of significance \(\alpha\), we reject \(H_{0}\) whenever D falls outside the \(c= 1-\alpha\) confidence interval for \(\mu\) based on the sample data. If a 95% confidence interval for \(\mu_{1} — \mu_{2}\) contains only positive numbers then we have to reject \(H_{0}\) at the level of significance \(\alpha = 0.05\).
Since, the confidence interval does not contain D = 0 and hence it falls outside the 95% confidence interval.
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2020-12-24
In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to construct a confidence interval from sample data. Let * be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean: For a two-tailed hypothesis test with level of significance a and null hypothesis H_0 : mu = k we reject Ho whenever k falls outside the c = 1 — alpha confidence interval for mu based on the sample data. When A falls within the c = 1 — alpha confidence interval. we do reject H_0. For a one-tailed hypothesis test with level of significance Ho : mu = k and null hypothesiswe reject Ho whenever A falls outsidethe c = 1 — 2alpha confidence interval for p based on the sample data. When A falls within thec = 1 — 2alpha confidence interval, we do not reject H_0. A corresponding relationship between confidence intervals and two-tailed hypothesis tests is also valid for other parameters, such as p,mu1 — mu_2, and p_1, - p_2. (b) Consider the hypotheses H_0 : p_1 — p_2 = O and H_1 : p_1 — p_2 != Suppose a 98% confidence interval for p_1 — p_2 contains only positive numbers. Should you reject the null hypothesis when alpha = 0.05? Why or why not?
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-06-01

Is there a relationship between confidence intervals and two-tailed hypothesis tests? Let e be the level of confidence used to construct a confidence interval from sample data. Let \(\alpha\) be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean. (A corresponding relationship between confidence intervals and two-tailed hypothesis tests also is valid for other parameters such as p, \(mu_{1}-\mu_{2}\), or \(p_{1}-p_{2}\), which we will study in Section 9.3, 10.2, and 10.3.) Whenever the value of k given in the null hypothesis falls outside the \(\displaystyle{c}={1}-\alpha\) confidence interval for the parameter, we reject \(H_{0}\). For example, consider a two-tailed hypothesis test with \(\alpha =0.01\ \text{and}\ H_{0}:\mu =20 H_{1}:\mu 20\) sample mean \(\displaystyle{x}¯={22}\) from a population with standard deviation \(\displaystyle\sigma={4}\).
(a) What is the value of c\(\displaystyle{c}={1}-\alpha\);. Using the methods, construct a \(\displaystyle{c}={1}-\alpha\); confidence interval for μ from the sample data. What is the value of \(\mu\); given in the null hypothesis (i.e., what is k)? Is this value in the confidence interval? Do we reject or fail to reject \(H_0\) based on this information?
(b) using methods, find the P-value for the hypothesis test. Do we reject or fail to reject \(H_0\)? Compare your result to that of part (a).

asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2020-12-24
For the same data, null hypothesis, and level of significance, if the conclusion is to reject \(H_{0}\) based on a two-tailed test, do you also reject Ho based on a one-tailed test? Explain.
asked 2021-05-20
Assume that a ball of charged particles has a uniformly distributednegative charge density except for a narrow radial tunnel throughits center, from the surface on one side to the surface on the opposite side. Also assume that we can position a proton any where along the tunnel or outside the ball. Let \(\displaystyle{F}_{{R}}\) be the magnitude of the electrostatic force on the proton when it islocated at the ball's surface, at radius R. As a multiple ofR, how far from the surface is there a point where the forcemagnitude is 0.44FR if we move the proton(a) away from the ball and (b) into the tunnel?
asked 2020-12-07
Hypothesis Testing Review
For each problem below, simply identify the null and alternative hypotheses. Use appropriate notation/symbols. You do not have to run any hypothesis tests, although it's good practice and I'll post answers for all of them.
1) A simple random sample of 44 men from a normally distributed population results in a standard deviation of 10.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of men have a standard deviation equal to 10 beats per minute.
2) In 1997, a survey of 880 households showed that 145 of them use e-mail. Use those sample results to test the claim that more than 15% of households use e-mail. Use a 0.05 significance level.
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2021-06-02
True or false?
a. The center of a 95% confidence interval for the population mean is a random variable.
b. A 95% confidence interval for μμ contains the sample mean with probability .95.
c. A 95% confidence interval contains 95% of the population.
d. Out of one hundred 95% confidence intervals for μμ, 95 will contain μμ.

You might be interested in

...