Question

t=t0+(frac{k}{2})w, for w

Equations and inequalities
ANSWERED
asked 2021-02-25
\(\displaystyle{t}={t}{0}+{\left({\frac{{{k}}}{{{2}}}}\right)}{w}\), for w

Answers (1)

2021-02-26

We are given:
\(\displaystyle{t}={t}{0}+{\left({\frac{{{k}}}{{{2}}}}\right)}{w}\)
Subtract t0 from both sides:
\(\displaystyle{t}-{t}{0}={t}{0}+{\left({\frac{{{k}}}{{{2}}}}\right)}{w}-{t}{0}\)
\(\displaystyle{t}-{t}{0}={\left({\frac{{{k}}}{{{2}}}}\right)}{w}\)
Multiply both sides by \(\frac{2}{k}\)
\(\displaystyle{\left({t}-{t}{0}\right)}{\frac{{{2}}}{{{k}}}}={\left({\frac{{{k}}}{{{2}}}}\right)}{w}\cdot{\left({\frac{{{2}}}{{{k}}}}\right)}\)
\(\displaystyle{\frac{{{2}{\left({t}-{t}{0}\right)}}}{{{k}}}}={w}\)
\(\displaystyle{w}={2}\frac{{{t}-{t}{0}}}{{k}}\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...