What is the z-score of X, if n = 135, mu=74, SD =3, and X =73?

wendi1019gt 2022-08-06 Answered
What is the z-score of X, if n = 135, μ = 74 , SD =3, and X =73?
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Answers (1)

Addison Herman
Answered 2022-08-07 Author has 15 answers
We can use: z = x - μ σ assuming we have σ
but here we have instead SD = s;
z = x - μ s n ; where n is sample size...

We have step-by-step solutions for your answer!

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

New questions

Question on designing a state observer for discrete time system
I came through this problem while studying for an exam in control systems:
Consider the following discrete time system
x ( k + 1 ) = A x ( k ) + b u ( k ) , y ( k ) = c x ( k )
where b = ( 0 , 1 ) T , c = ( 1 , 0 ) , A = [ 2 1 0 g ] for some g R
Find a feedback regulation (if there is any) of the form u ( k ) = K x ^ ( k ) where x ^ ( k ) is the country estimation vector that is produced via a linear complete-order state observer such that the nation of the system and the estimation blunders e ( k ) = x ( k ) x ^ ( k ) go to zero after a few finite time. layout the kingdom observer and the block diagram.
My method
it is clean that the eigenvalues of the machine are λ 1 = 2 , λ 2 = g (consequently it is not BIBO solid) and that the pair (A,b) is controllable for every fee of g, as nicely a the pair (A,c) is observable for all values of g. consequently we will shift the eigenvalues with the aid of deciding on a benefit matrix okay such that our device is strong, i.e. it has its eigenvalues inside the unit circle | z | = 1.
The state observer equation is
[ x ( k + 1 ) e ( k + 1 ) ] T = [ A b K B k O A L C ] [ x ( k ) e ( k ) ] T
With characteristic equation
χ ( z ) = | z I A + b K | | z I A + L C | = χ K ( z ) χ L ( z )
Also consider
K = [ k 1 k 2 k 3 k 4 ]
and let a = k 1 + k 3 , β = k 2 + k 4
Then χ K ( z ) = ( z 2 ) ( z + g + β ) + a.
So we can select some eigenvalues inside the unit circle and determine a , β in terms of g. Choosing e.g. λ 1 , 2 = ± 1 / 2 we get a = 3 g + 33 / 8 , β = 9 / 4 g , g R
Questions
I want to ask the following:
Is my approach correct? Should I select the eigenvalues myself since I am asked to design the observer or should I just solve the characteristic equation and impose | λ 1 , 2 | < 1?
Should I determine L matrix as well since the error must also vanish? (because it is not asked)