# a. Use you calculator to determine which two of the followingequations is an identity. 1/(sinx + cosx)= cscx +secx 1/(1-sin^2x)= 1+ tan^2x b. Verify the identity equation.

a. Use you calculator to determine which two of the following equations is an identity.
$1/\left(\mathrm{sin}x+\mathrm{cos}x\right)=\mathrm{csc}x+\mathrm{sec}x$
$1/\left(1-{\mathrm{sin}}^{2}x\right)=1+{\mathrm{tan}}^{2}x$
b. Verify the identity equation.
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Steppkelk
b) $1/\left(\mathrm{sin}x+\mathrm{cos}x\right)=\mathrm{csc}x+\mathrm{sec}x=1/\left(\mathrm{sin}x+\mathrm{cos}x\right)=1/\mathrm{sin}x+1/\mathrm{cos}x$ not true
###### Not exactly what you’re looking for?
on2t1inf8b
$1/\left(\mathrm{sin}x+\mathrm{cos}x\right)=\mathrm{csc}x+\mathrm{sec}x$
$\mathrm{csc}x=1/\mathrm{sin}x$
$\mathrm{sec}x=1/\mathrm{cos}x$
$1/\left(\mathrm{sin}x+\mathrm{cos}x\right)=1/\mathrm{sin}x+1/\mathrm{cos}x$
not true
$1/\left(1-{\mathrm{sin}}^{2}x\right)=1+{\mathrm{tan}}^{2}x$
$1-{\mathrm{sin}}^{2}x={\mathrm{cos}}^{2}x$
$1+{\mathrm{tan}}^{2}x={\mathrm{sec}}^{2}x$
$1/{\mathrm{cos}}^{2}x={\mathrm{sec}}^{2}x$
${\mathrm{sec}}^{2}x={\mathrm{sec}}^{2}x$