Identify which assumption is needed to use the linear regression model to make inferences about the relationship. Identify which assumption is the least critical.

emancipezN 2020-10-21 Answered
Identify which assumption is needed to use the linear regression model to make inferences about the relationship.
Identify which assumption is the least critical.
You can still ask an expert for help

Want to know more about Sampling distributions?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Aniqa O'Neill
Answered 2020-10-22 Author has 100 answers
Assumptions:
- Data are collected randomly.
- A linear relationship between dependent variable y and explanatory variable x in the population.
- The population values of y at each value of x follow a normal distribution with the same standard deviation at each x value.
In this case, the third assumption is the least critical because the estimates from the regression models have bell-shaped sampling distributions when the sample size is large according to the central limit theorem.
Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-03-09
Which of the following is true about the sampling distribution of means?
A. Shape of the sampling distribution of means is always the same shape as the population distribution, no matter what the sample size is.
B. Sampling distributions of means are always nearly normal.
C. Sampling distributions of means get closer to normality as the sample size increases.
D. Sampling distribution of the mean is always right skewed since means cannot be smaller than 0.
asked 2020-12-07
Which of the following are possible examples of sampling distributions? (Select all that apply.)
mean trout lengths based on samples of size 5
average SAT score of a sample of high school students
average male height based on samples of size 30
heights of college students at a sampled universit
yall mean trout lengths in a sampled lake
asked 2021-02-12
Which of the following is true about sampling distributions?
-Shape of the sampling distribution is always the same shape as the population distribution, no matter what the sample size is.
-Sampling distributions are always nearly normal.
-Sampling distribution of the mean is always right skewed since means cannot be smaller than 0.
-Sampling distributions get closer to normality as the sample size increases.
asked 2021-03-04
Which of the following statements about the sampling distribution of the sample mean is incorrect?
(a) The standard deviation of the sampling distribution will decrease as the sample size increases.
(b) The standard deviation of the sampling distribution is a measure of the variability of the sample mean among repeated samples.
(c) The sample mean is an unbiased estimator of the population mean.
(d) The sampling distribution shows how the sample mean will vary in repeated samples.
(e) The sampling distribution shows how the sample was distributed around the sample mean.
asked 2020-11-11
Explain how to use the sampling distributions of A and B to decide which is the best estimator of α.
asked 2020-12-12
Check whether the standard error of the sampling distributions of p obtained in part(a) and part(b) are different.
asked 2021-06-04
Consider the two samples of data from the McKenzie School. The numbers represent the time in seconds that it took each child to cover a distance of 50 meters. Girls’ Times: 8.3, 8.6, 9.5, 9.5, 9.6, 9.8, 9.9, 9.9, 10.0, 10.0, 10.0, 10.1, 10.3, 10.5 Boys’ Times: 7.9, 8.0, 8.2, 8.2, 8.4, 8.6, 8.8, 9.1, 9.3, 9.5, 9.8, 9.8, 10.0, 10.1, 10.3. Based on the sample means, do you conclude that the distributions of times from the boys’ population and girls’ population are different? Explain.