# Label the words of this 30,60,90 right triangle SL,2SL,and SLsqrt2 01510201131.png

Question
Label the words of this 30,60,90 right triangle $$\displaystyle{S}{L},{2}{S}{L},{\quad\text{and}\quad}{S}{L}\sqrt{{2}}$$

2020-12-30
From the right triangle ABC, we have
$$\displaystyle\therefore{\sin{{\left({A}\right)}}}=\frac{{{B}{C}}}{{{A}{C}}}$$
$$\displaystyle\Rightarrow{\sin{{\left({30}^{\circ}\right)}}}=\frac{{v}}{{6}}$$
$$\displaystyle\Rightarrow{1}=\frac{{v}}{{3}}$$
$$\displaystyle\Rightarrow{v}={3}$$
From the right triangle ABC, we have
$$\displaystyle\therefore{\cos{{\left({A}\right)}}}=\frac{{{A}{B}}}{{{A}{C}}}$$
$$\displaystyle\Rightarrow{\cos{{\left({30}^{\circ}\right)}}}=\frac{{u}}{{6}}$$
$$\displaystyle\Rightarrow\frac{\sqrt{{3}}}{{2}}=\frac{{u}}{{6}}$$
$$\displaystyle\Rightarrow\sqrt{{3}}=\frac{{u}}{{3}}$$
$$\displaystyle\Rightarrow{u}={3}\sqrt{{3}}$$
Since, the sum of all angles of a triangle is $$\displaystyle{180}^{\circ}$$
$$\displaystyle\therefore\angle{A}+\angle{B}+\angle{C}={180}^{\circ}$$
$$\displaystyle\Rightarrow{30}^{\circ}+{90}^{\circ}+\angle{C}={180}^{\circ}$$
$$\displaystyle\Rightarrow{120}^{\circ}+\angle{C}={180}^{\circ}$$
$$\displaystyle\Rightarrow\angle{C}={60}^{\circ}$$

### Relevant Questions

Label the words of this 30,60,90 right triangle $$\displaystyle{S}{L},{2}{S}{L},{\quad\text{and}\quad}{S}{L}\sqrt{{2}}$$
Label the words of this 30,60,90 right triangle $$\displaystyle{S}{L},{2}{S}{L},{\quad\text{and}\quad}{S}{L}\sqrt{{2}}$$
The drawing shows a uniform electric field that points in the negative y direction; the magnitude of the field is 5300 N/C.Determine the electric potential difference (a) VB - VA between points A and B, (b) VC - VB between points B and C, and (c) VA - VB between points C and A.
A-C is 10.0cm, b-c is 8.0 cm, a-b is 6.0 cm. They are all in a right triangle shape. With angle b having the 90 degree angle, and electric potential is pointing down. This is problem 56 in 7th edition.
Is this triangle a right triangle
Is this triangle a right triangle