1.Find all values of ? in radians with -2? < ? < 2? such that cos(?) = sqrt(3)/2 and -sqrt(3)/2

2.sin(t) = 0.66? sec(t) < 0

cos t , tan t, cot t, sec t ???

2.sin(t) = 0.66? sec(t) < 0

cos t , tan t, cot t, sec t ???

klepkowy7c
2022-07-25
Answered

2.sin(t) = 0.66? sec(t) < 0

cos t , tan t, cot t, sec t ???

You can still ask an expert for help

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-04-24

Given that A,B,C be angles in an acute triangle.

If$(5+4\mathrm{cos}A)(5-4\mathrm{cos}B)=9$ and $(13-12\mathrm{cos}B)(13-12\mathrm{cos}C)=25$

find$\mathrm{cos}(A+C)$ . I know $A+B+C={180}^{\circ}$ and $\mathrm{cos}B=-\mathrm{cos}(A+C)$ and what next?

If

find

asked 2022-04-27

I cannot find the one-sided limit

$\underset{x\to \frac{\pi}{2}+0}{lim}\frac{\sqrt{1+\mathrm{cos}2x}}{\sqrt{\pi}-\sqrt{2x}}$

asked 2021-08-13

USe the trigonometric identites that we went over in class to write the following trigonometric expression in its most reduced form

${\mathrm{cos}}^{2}\left(5x\right)$

asked 2022-04-10

The question asks to prove that -

$\frac{\mathrm{sin}x}{\mathrm{cos}3x}+\frac{\mathrm{sin}3x}{\mathrm{cos}9x}+\frac{\mathrm{sin}9x}{\mathrm{cos}27x}=\frac{1}{2}(\mathrm{tan}27x-\mathrm{tan}x)$

asked 2021-12-30

Any trick for evaluating $(\frac{\sqrt{3}}{2}\mathrm{cos}\theta +\frac{i}{2}\mathrm{sin}\left(\theta \right))}^{7$ ?

Expressions of the form$(a\mathrm{cos}\left(\theta \right)+bi\mathrm{sin}\left(\theta \right))}^{n$ come up from time to time in applications of complex analysis, but to my knowledge the De Moivre's formula can only be applied with a=b. Is there some trick to deal with the case of $a\ne b$ , for example when the expression is $(\frac{\sqrt{3}}{2}\mathrm{cos}\theta +\frac{i}{2}\mathrm{sin}\theta )}^{7$ ?

Expressions of the form

asked 2022-05-28

I need to find the limit for $x\in \mathbb{R}$

$\underset{n\to \mathrm{\infty}}{lim}\sum _{k=0}^{n}|{e}^{ixk/n}-{e}^{ix(k-1)/n}|$

Using Euler's formula and cosine of a sum this simplifies to

$\underset{n\to \mathrm{\infty}}{lim}n\sqrt{2(1-\mathrm{cos}(x/n))}$

$\underset{n\to \mathrm{\infty}}{lim}\sum _{k=0}^{n}|{e}^{ixk/n}-{e}^{ix(k-1)/n}|$

Using Euler's formula and cosine of a sum this simplifies to

$\underset{n\to \mathrm{\infty}}{lim}n\sqrt{2(1-\mathrm{cos}(x/n))}$