# Rewrite the statements in if-then form. Having two 45^@ angles is a sufficient condition for this triangle to be a right triangle.

Question
Rewrite the statements in if-then form.
Having two $$\displaystyle{45}^{\circ}$$ angles is a sufficient condition for this triangle to be a right triangle.

2021-03-09
It is given that Having two $$\displaystyle{45}^{\circ}$$ angles is a sufficient condition for this triangle to be a right triangle.
Let consider p be the triangle that has 45 degree angles and q be the triangle that is a right triangle.
So, the statement in if-then form is given by,
If a triangle has two 45 degree angles, then the triangle is a right triangle.
Answer: The statements in if-then form is If a triangle has two 45 degree angles, then the triangle is a right triangle.

### Relevant Questions

Use long division to rewrite the equation for g in the form
$$\text{quotient}+\frac{remainder}{divisor}$$
Then use this form of the function's equation and transformations of
$$\displaystyle{f{{\left({x}\right)}}}={\frac{{{1}}}{{{x}}}}$$
to graph g.
$$\displaystyle{g{{\left({x}\right)}}}={\frac{{{2}{x}+{7}}}{{{x}+{3}}}}$$

A random sample of $$n_1 = 14$$ winter days in Denver gave a sample mean pollution index $$x_1 = 43$$.
Previous studies show that $$\sigma_1 = 19$$.
For Englewood (a suburb of Denver), a random sample of $$n_2 = 12$$ winter days gave a sample mean pollution index of $$x_2 = 37$$.
Previous studies show that $$\sigma_2 = 13$$.
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
$$H_0:\mu_1=\mu_2.\mu_1>\mu_2$$
$$H_0:\mu_1<\mu_2.\mu_1=\mu_2$$
$$H_0:\mu_1=\mu_2.\mu_1<\mu_2$$
$$H_0:\mu_1=\mu_2.\mu_1\neq\mu_2$$
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference $$\mu_1 - \mu_2$$. Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the $$\alpha = 0.01$$ level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the $$\alpha = 0.01$$ level, we reject the null hypothesis and conclude the data are statistically significant.
At the $$\alpha = 0.01$$ level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the $$\alpha = 0.01$$ level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
$$\mu_1 - \mu_2$$.
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
The top string of a guitar has a fundamental frequency of 33O Hz when it is allowed to vibrate as a whole, along all its 64.0-cm length from the neck to the bridge. A fret is provided for limiting vibration to just the lower two thirds of the string, If the string is pressed down at this fret and plucked, what is the new fundamental frequency? The guitarist can play a "natural harmonic" by gently touching the string at the location of this fret and plucking the string at about one sixth of the way along its length from the bridge. What frequency will be heard then?
A wagon with two boxes of Gold, having total mass 300 kg, is cutloose from the hoses by an outlaw when the wagon is at rest 50m upa 6.0 degree slope. The outlaw plans to have the wagon roll downthe slope and across the level ground, and then fall into thecanyon where his confederates wait. But in a tree 40m from thecanyon edge wait the Lone Ranger (mass 75.0kg) and Tonto (mass60.0kg). They drop vertically into the wagon as it passes beneaththem. a) if they require 5.0 s to grab the gold and jump out, willthey make it before the wagon goes over the edge? b) When the twoheroes drop into the wagon, is the kinetic energy of the system ofthe heroes plus the wagon conserved? If not, does it increase ordecrease and by how much?
The converse of the Pythagorean theorem is also a true statement: If the sum of the squares of the lengths of two sides of a triangle is equal to the square of the length of the third side, then the triangle is a right triangle. Use the distance formula and the Pythagorean theorem to determine whether the set of points could be vertices of a right triangle.
(-4,3), (0,5), and (3,-4)
The student engineer of a campus radio station wishes to verify the effectivencess of the lightning rod on the antenna mast. The unknown resistance $$\displaystyle{R}_{{x}}$$ is between points C and E. Point E is a "true ground", but is inaccessible for direct measurement because the stratum in which it is located is several meters below Earth's surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance $$\displaystyle{R}_{{y}}$$. The procedure for finding the unknown resistance $$\displaystyle{R}_{{x}}$$ is as follows. Measure resistance $$\displaystyle{R}_{{1}}$$ between points A and B. Then connect A and B with a heavy conducting wire and measure resistance $$\displaystyle{R}_{{2}}$$ between points A and C.Derive a formula for $$\displaystyle{R}_{{x}}$$ in terms of the observable resistances $$\displaystyle{R}_{{1}}$$ and $$\displaystyle{R}_{{2}}$$. A satisfactory ground resistance would be $$\displaystyle{R}_{{x}}{<}{2.0}$$ Ohms. Is the grounding of the station adequate if measurments give $$\displaystyle{R}_{{1}}={13}{O}{h}{m}{s}$$ and R_2=6.0 Ohms?
An electron is fired at a speed of $$\displaystyle{v}_{{0}}={5.6}\times{10}^{{6}}$$ m/s and at an angle of $$\displaystyle\theta_{{0}}=–{45}^{\circ}$$ between two parallel conductingplates that are D=2.0 mm apart, as in Figure. Ifthe potential difference between the plates is $$\displaystyle\triangle{V}={100}\ {V}$$, determine (a) how close d the electron will get to the bottom plate and (b) where the electron will strike the top plate.