For each system of linear equations, classify.

The system of equation of equations is:

a) consistent independent

b) consistent dependent

c) inconsistent

This means the system has:

a) a unique solution

b) infinitely many solutions

c) no solution

I) $Lin{e}_{1}:\text{}y=x-3\phantom{\rule{0ex}{0ex}}Lin{e}_{2}:y=-x+3$

II) $Lin{e}_{1}:\text{}y=\frac{1}{4}x-4\phantom{\rule{0ex}{0ex}}Lin{e}_{2}:y=-x+4y=-16$

III) $Lin{e}_{1}:\text{}y=-2\phantom{\rule{0ex}{0ex}}Lin{e}_{2}:y=4$

The system of equation of equations is:

a) consistent independent

b) consistent dependent

c) inconsistent

This means the system has:

a) a unique solution

b) infinitely many solutions

c) no solution

I) $Lin{e}_{1}:\text{}y=x-3\phantom{\rule{0ex}{0ex}}Lin{e}_{2}:y=-x+3$

II) $Lin{e}_{1}:\text{}y=\frac{1}{4}x-4\phantom{\rule{0ex}{0ex}}Lin{e}_{2}:y=-x+4y=-16$

III) $Lin{e}_{1}:\text{}y=-2\phantom{\rule{0ex}{0ex}}Lin{e}_{2}:y=4$