Find the inverse function if:

$g(x)=1+\mathrm{ln}x$

$g(x)=1+\mathrm{ln}x$

Roselyn Daniel
2022-07-27
Answered

Find the inverse function if:

$g(x)=1+\mathrm{ln}x$

$g(x)=1+\mathrm{ln}x$

You can still ask an expert for help

Anaya Gregory

Answered 2022-07-28
Author has **14** answers

$y=1+\mathrm{ln}x$

to find inverse you switch x and y and solve for y

$x=1+\mathrm{ln}y$

$x-1=\mathrm{ln}y$

${e}^{x-1}=y$

${g}^{-1}(x)={e}^{x-1}$

to find inverse you switch x and y and solve for y

$x=1+\mathrm{ln}y$

$x-1=\mathrm{ln}y$

${e}^{x-1}=y$

${g}^{-1}(x)={e}^{x-1}$

asked 2021-12-04

Find the second order derivatives of the function f(x)

${e}^{x}\mathrm{sin}x\mathrm{cos}2x$

asked 2021-08-16

If f(x) = 4x - 3, show that f(2x) = 2f(x) + 3

asked 2021-12-03

asked 2021-10-03

Find $\frac{{d}^{9}}{{dx}^{9}}\left({x}^{8}\mathrm{ln}x\right)$ .

asked 2021-12-07

Find the derivatives of the functions y=(2x-5)(4-x)-1

asked 2021-10-03

Find derivatives of $r=\frac{12}{0}-\frac{4}{{0}^{3}}+\frac{1}{{0}^{4}}$

asked 2021-11-16

For each function below, write the simplest composition using two of the functions from the given list.

$5\left(\frac{1}{x}\right)=$

$5\left({e}^{x}\right)=$

$\sqrt{(x+7)}=$

The next two functions are compositions of three different functions from the given list.

${(\frac{1}{x}+7)}^{2}=$

${e}^{{x}^{2}}+7=$

The next two functions are compositions of three different functions from the given list.