Find the Maclaurin series for $f(x)=({x}^{2}+4){e}^{2x}$ and use it to calculate the 1000th derivative of $f(x)$ at $x=0$. Is it possible to just find the Maclaurin series for e2x and then multiply it by $({x}^{2}+4)$?

Ibrahim Rosales
2022-07-23
Answered

Find the Maclaurin series for $f(x)=({x}^{2}+4){e}^{2x}$ and use it to calculate the 1000th derivative of $f(x)$ at $x=0$. Is it possible to just find the Maclaurin series for e2x and then multiply it by $({x}^{2}+4)$?

You can still ask an expert for help

Reinfarktq6

Answered 2022-07-24
Author has **18** answers

$({x}^{2}+4){e}^{2x}=({x}^{2}+4)\sum _{n\ge 0}\frac{(2x{)}^{n}}{n!}=\sum _{n\ge 2}{x}^{n}\cdot \frac{{2}^{n-2}}{(n-2)!}+\sum _{n\ge 0}{x}^{n}\cdot \frac{{2}^{n}\cdot 4}{n!}=\phantom{\rule{0ex}{0ex}}=\sum _{n\ge 0}{x}^{n}\cdot \left(\frac{n(n-1){2}^{n-2}+{2}^{n+2}}{n!}\right)\phantom{\rule{thinmathspace}{0ex}}.$

asked 2022-06-28

How do you find the volume of the solid obtained by rotating the region bounded by y=x and $y={x}^{2}$ about the line x=-1?

asked 2021-11-12

Find a vector equation and parametric equations for the line segment that joins P to Q.

$P(1,-1,8),\text{}Q(8,2,1)$

asked 2022-01-01

Find the complex form of the Fourier Series expansion of

$f\left(x\right)=\mathrm{cos}ax,\text{}-\pi x\pi$

asked 2021-10-12

Let $P\left(x\right)=F\left(x\right)G\left(x\right)$ and $Q\left(x\right)=\frac{F\left(x\right)}{G\left(x\right)}$ , where F and G are the functions whose graphs are shown.

a) Find${P}^{\prime}\left(2\right)$

b) Find${Q}^{\prime}\left(7\right)$

a) Find

b) Find

asked 2022-02-24

I want to evaluate the sum

$\sum _{n=2}^{\mathrm{\infty}}\frac{{n}^{4}+3{n}^{2}+10n+10}{{2}^{n}({n}^{4}+4)}$

asked 2022-06-26

It's easy to show that

$\mathrm{sin}A-\mathrm{sin}B=2\mathrm{cos}\left(\frac{A+B}{2}\right)\mathrm{sin}\left(\frac{A-B}{2}\right),$

$\mathrm{sin}(2k+1)x-\mathrm{sin}(2k-1)x=2\mathrm{cos}2kx\cdot \mathrm{sin}x.$

$\mathrm{sin}A-\mathrm{sin}B=2\mathrm{cos}\left(\frac{A+B}{2}\right)\mathrm{sin}\left(\frac{A-B}{2}\right),$

$\mathrm{sin}(2k+1)x-\mathrm{sin}(2k-1)x=2\mathrm{cos}2kx\cdot \mathrm{sin}x.$

asked 2021-11-17

Use the definition of Taylor series to find the Taylor series, centered at c for the function. $f\left(x\right)=\mathrm{ln}x,c=1$