From Rogawski $ET$ $2e$ section $10.7$, exercise $4$.

Find the Maclaurin series for $f(x)={\displaystyle \frac{{x}^{2}}{1-8{x}^{8}}}$.

$\frac{{x}^{2}}{1-8{x}^{8}}}=\sum _{n=0}^{\mathrm{\infty}}[\text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}]$

Find the Maclaurin series for $f(x)={\displaystyle \frac{{x}^{2}}{1-8{x}^{8}}}$.

$\frac{{x}^{2}}{1-8{x}^{8}}}=\sum _{n=0}^{\mathrm{\infty}}[\text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}]$