If I found that a series converges, how can I know to what number it's converging to?

I started learning series in calculus and I have trouble catching a basic concept. When I try to find if a series converges or diverges I have many ways to go about it. If I see that the series diverges than I stop there. If I see that the series converges than there is a number it's converging to right?

For example: $\sum \frac{2}{{n}^{3}+4}$. I do the limit comparison test with the series $\sum \frac{1}{{n}^{3}}$ and get a finite number 2. I know that $\sum \frac{1}{{n}^{3}}$ converges, so now I know that $\sum \frac{2}{{n}^{3}+4}$ converges also. How do I know to what number it converges to?

I started learning series in calculus and I have trouble catching a basic concept. When I try to find if a series converges or diverges I have many ways to go about it. If I see that the series diverges than I stop there. If I see that the series converges than there is a number it's converging to right?

For example: $\sum \frac{2}{{n}^{3}+4}$. I do the limit comparison test with the series $\sum \frac{1}{{n}^{3}}$ and get a finite number 2. I know that $\sum \frac{1}{{n}^{3}}$ converges, so now I know that $\sum \frac{2}{{n}^{3}+4}$ converges also. How do I know to what number it converges to?