Fraction inequality

Suppose we know that

$\begin{array}{r}\frac{a+b+d}{{a}^{\prime}+{b}^{\prime}+{d}^{\prime}}\le M\phantom{\rule{2em}{0ex}}\text{and}\phantom{\rule{2em}{0ex}}\frac{a+c+d}{{a}^{\prime}+{c}^{\prime}+{d}^{\prime}}\le M\end{array}$

and

$\begin{array}{r}\frac{a}{{a}^{\prime}}\le \frac{b}{{b}^{\prime}}\le \frac{d}{{d}^{\prime}}\phantom{\rule{2em}{0ex}}\text{and}\phantom{\rule{2em}{0ex}}\frac{a}{{a}^{\prime}}\le \frac{c}{{c}^{\prime}}\le \frac{d}{{d}^{\prime}}\end{array}$

and also that $a,b,c,d,{a}^{\prime},{b}^{\prime},{c}^{\prime},{d}^{\prime}\in (0,1]$

Is the following true?

$\begin{array}{r}\frac{a+b+c+d}{{a}^{\prime}+{b}^{\prime}+{c}^{\prime}+{d}^{\prime}}\le M\end{array}$

Suppose we know that

$\begin{array}{r}\frac{a+b+d}{{a}^{\prime}+{b}^{\prime}+{d}^{\prime}}\le M\phantom{\rule{2em}{0ex}}\text{and}\phantom{\rule{2em}{0ex}}\frac{a+c+d}{{a}^{\prime}+{c}^{\prime}+{d}^{\prime}}\le M\end{array}$

and

$\begin{array}{r}\frac{a}{{a}^{\prime}}\le \frac{b}{{b}^{\prime}}\le \frac{d}{{d}^{\prime}}\phantom{\rule{2em}{0ex}}\text{and}\phantom{\rule{2em}{0ex}}\frac{a}{{a}^{\prime}}\le \frac{c}{{c}^{\prime}}\le \frac{d}{{d}^{\prime}}\end{array}$

and also that $a,b,c,d,{a}^{\prime},{b}^{\prime},{c}^{\prime},{d}^{\prime}\in (0,1]$

Is the following true?

$\begin{array}{r}\frac{a+b+c+d}{{a}^{\prime}+{b}^{\prime}+{c}^{\prime}+{d}^{\prime}}\le M\end{array}$