Geometric series with probability

Archeological evidence indicates that the ancient (pre-Roman) Etruscans played dice using a dodecahedral die having 12 pentagonal faces numbered 1 through 12 (figure above). One could simulate such a die by drawing a random card from a deck of cards numbered 1 through k. for your own personal value of k, begin with the largest digit in the sum of the digits in your student ID number. This is your value of k unless this digit is less than 5, in which case subtract it from 10 to get your own value of k. a.) John and Mary draw alternately from a deck of shuffled k cards. The first one to draw an ace-the card numbered one- wins. Assume that John draws first. Use the formula for the sum of a geometric series to calculate (both a rational number and a four place decimal) the probability J that John wins, and the probability M that Mary wins. Check that $M+J=1$. b.) Now John , Mary, Paul draw alternately from a deck of k cards. Calculate separately their respective probabilities of winning, given that John draws first and Mary draw second. Check that $J+M+P=1$

Archeological evidence indicates that the ancient (pre-Roman) Etruscans played dice using a dodecahedral die having 12 pentagonal faces numbered 1 through 12 (figure above). One could simulate such a die by drawing a random card from a deck of cards numbered 1 through k. for your own personal value of k, begin with the largest digit in the sum of the digits in your student ID number. This is your value of k unless this digit is less than 5, in which case subtract it from 10 to get your own value of k. a.) John and Mary draw alternately from a deck of shuffled k cards. The first one to draw an ace-the card numbered one- wins. Assume that John draws first. Use the formula for the sum of a geometric series to calculate (both a rational number and a four place decimal) the probability J that John wins, and the probability M that Mary wins. Check that $M+J=1$. b.) Now John , Mary, Paul draw alternately from a deck of k cards. Calculate separately their respective probabilities of winning, given that John draws first and Mary draw second. Check that $J+M+P=1$