What are other sampling distributions for mean?

What are other sampling distributions for mean?

Question
Sampling distributions
asked 2020-11-27
What are other sampling distributions for mean?

Answers (1)

2020-11-28
Step 1
Sampling distributions : The probability distribution of a given statistic based on a random sample.
The sampling distribution depends on: the underlying distribution of the population, the statistic being consider.
Let \(x_{1},x_{2},....x_{n}\) are random sample from population with mean µ and standard deviation σ then sampling distribution of sample follows approximately normal distribution as,
\(\overline{x}\sim N(\mu_{\overline{x}},\sigma_{\overline{x}})\ where\ \sigma_{\overline{x}}=\frac{\sigma}{\sqrt{n}}\)
And if population standard deviation \sigma is unknown then,
\(\overline{x}\sim N(\mu_{\overline{x}},S_{\overline{x}})\ where\ S_{\overline{x}}=\frac{S}{\sqrt{n}}\)
Step 2
This distribution is normal since the underlying population is normal, although sampling distributions may also often be close to normal even when the population distribution is not.
0

Relevant Questions

asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2021-03-09
Which of the following is true about the sampling distribution of means?
A. Shape of the sampling distribution of means is always the same shape as the population distribution, no matter what the sample size is.
B. Sampling distributions of means are always nearly normal.
C. Sampling distributions of means get closer to normality as the sample size increases.
D. Sampling distribution of the mean is always right skewed since means cannot be smaller than 0.
asked 2021-02-12
Which of the following is true about sampling distributions?
-Shape of the sampling distribution is always the same shape as the population distribution, no matter what the sample size is.
-Sampling distributions are always nearly normal.
-Sampling distribution of the mean is always right skewed since means cannot be smaller than 0.
-Sampling distributions get closer to normality as the sample size increases.
asked 2021-02-19
The distribution of height for a certain population of women is approximately normal with mean 65 inches and standard deviation 3.5 inches. Consider two different random samples taken from the population, one of size 5 and one of size 85.
Which of the following is true about the sampling distributions of the sample mean for the two sample sizes?
Both distributions are approximately normal with mean 65 and standard deviation 3.5.
A
Both distributions are approximately normal. The mean and standard deviation for size 5 are both less than the mean and standard deviation for size 85.
B
Both distributions are approximately normal with the same mean. The standard deviation for size 5 is greater than that for size 85.
C
Only the distribution for size 85 is approximately normal. Both distributions have mean 65 and standard deviation 3.5.
D
Only the distribution for size 85 is approximately normal. The mean and standard deviation for size 5 are both less than the mean and standard deviation for size 85.
E
asked 2021-02-20
Which of the following are correct general statements about the central limit theorem? Select all that apply
1. The accuracy of the approximation it provides, improves when the trial success proportion p is closer to \(50\%\)
2. It specifies the specific mean of the curve which approximates certain sampling distributions.
3. It is a special example of the particular type of theorems in mathematics, which are called Limit theorems.
4. It specifies the specific standard deviation of the curve which approximates certain sampling distributions.
5. It’s name is often abbreviated by the three capital letters CLT.
6. The accuracy of the approximation it provides, improves as the sample size n increases.
7. The word Central within its name, is mean to signify its role of central importance in the mathematics of probability and statistics.
8. It specifies the specific shape of the curve which approximates certain sampling distributions.
asked 2021-02-09
Which of the following are correct general statements about the Central Limit Theorem?
(Select all that apply. To be marked correct: All of the correct selections must be made, with no incorrect selections.)
Question 3 options:
Its name is often abbreviated by the three capital letters CLT.
The accuracy of the approximation it provides, improves as the sample size n increases.
The word Central within its name, is meant to signify its role of central importance in the mathematics of probability and statistics.
It is a special example of the particular type of theorems in mathematics, which are called Limit Theorems.
It specifies the specific standard deviation of the curve which approximates certain sampling distributions.
The accuracy of the approximation it provides, improves when the trial success proportion p is closer to \(50\%\).
It specifies the specific shape of the curve which approximates certain sampling distributions.
It specifies the specific mean of the curve which approximates certain sampling distributions.
asked 2020-12-25
Which of the following are correct general statements about the Central Limit Theorem? Select all that apply.
1. It specifies the specific shape of the curve which approximates certain sampling distributions.
2. It’s name is often abbreviated by the three capital letters CLT
3. The word Central within its name, is meant to signify its role of central importance in the mathematics of probability and statistics.
4. The accuracy of the approximation it provides, improves when the trial success proportion p is closer to 50\%.
5. It specifies the specific mean of the curve which approximates certain sampling distributions.
6. The accuracy of the approximation it provides, improves as the sample size n increases.
7. It specifies the specific standard deviation of the curve which approximates certain sampling distributions.
8. It is a special example of the particular type of theorems in mathematics, which are called limit theorems.
asked 2020-12-05
Which of the following are correct general statements about the central limit theorem? Select all that apply
1. The accuracy of the approximation it provides, improves when the trial success proportion p is closer to \(50\%\)
2. It specifies the specific mean of the curve which approximates certain sampling distributions.
3. It is a special example of the particular type of theorems in mathematics, which are called Limit theorems.
4. It specifies the specific standard deviation of the curve which approximates certain sampling distributions.
5. It’s name is often abbreviated by the three capital letters CLT.
6. The accuracy of the approximation it provides, improves as the sample size n increases.
7. The word Central within its name, is mean to signify its role of central importance in the mathematics of probability and statistics.
8. It specifies the specific shape of the curve which approximates certain sampling distributions.
asked 2020-11-27
Which of the following are possible examples of sampling distributions? (Select all that apply.)
mean trout lengths based on samples of size 5 average male height based on samples of size 30 heights of college students at a sampled universityaverage SAT score of a sample of high school studentsall mean trout lengths in a sampled lake
asked 2020-12-07
Which of the following are possible examples of sampling distributions? (Select all that apply.)
mean trout lengths based on samples of size 5
average SAT score of a sample of high school students
average male height based on samples of size 30
heights of college students at a sampled universit
yall mean trout lengths in a sampled lake
...