 # Assume that​ women's heights have a mean of 63 inches ​(5 feet 3​inches) and a standard deviation of 3 inches. a. What​ women's height corresponds to a​ z-score of 1.20​? b. What​ women's height corresponds to a​ z-score of negative −1.00​? kadejoset 2022-07-22 Answered
Assume that​ women's heights have a mean of 63 inches ​(5 feet 3​inches) and a standard deviation of 3 inches. a. What​ women's height corresponds to a​ z-score of 1.20​? b. What​ women's height corresponds to a​ z-score of negative −1.00​?
You can still ask an expert for help

## Want to know more about Probability?

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it bardalhg
a)Mean=63 inches
Standard deviation =3 inches
z-score=1.2
$\therefore$ z=(x-mean)/sd
$=\left(x-63\right)/3$
$1.2=\frac{x-63}{3}$
$⇒\left(1.2\ast 3\right)=x-63$
$⇒3.6=x-63$
$⇒x=66.6$
Womens corresponding to a z-score of 1.2 is 66.6 inches
###### Not exactly what you’re looking for? smuklica8i
b) Mean=63 inches
Standard devition =3 inches
z-score=-1.00
therefore
z=(x-mean)/sd
-1.00=(x-63)/3
-3.00=x-63
x=-3+63=60
Womens height corresponds to a z-score of negative -1.00 is 60 inches