Find the values of the other trigonometric functions of theta if cot theta= -4/3and sin theta< 0.

Find the values of the other trigonometric functions of theta if cot theta= -4/3and sin theta< 0.

Question
Trigonometric Functions
asked 2021-02-09
Find the values of the other trigonometric functions of theta if \(\displaystyle{\cot{\theta}}=-\frac{{4}}{{3}}{\quad\text{and}\quad}{\sin{\theta}}{<}{0}\)</span>.

Answers (1)

2021-02-10
\(\displaystyle{\cot{\theta}}=−{43}\)
therefore,
\(\displaystyle{\left|{\cot{\theta}}\right|}={\left|−\frac{{4}}{{3}}\right|}=\frac{{4}}{{3}}\)
as we know that \(\displaystyle{\left|{\cot{\theta}}\right|}=\)(base)/(perpendicular)
therefore,
\(\displaystyle{\left|{\cot{\theta}}\right|}=\)(base)/(perpendicular)=4/3ZSK
therefore,
base=4 and perpendicular=3
as we know that:
\(\displaystyle{\left(\text{ypotenuse})^2=(\text{perpendicular})^2+(\text{base})^}{y}{p}{o}{t}{e}\nu{s}{e}\right\rbrace}{)}^{{2}}={\left(\text{perpendicular}\right)}^{{2}}+{\left(\text{base}\right)}^{{2}}\)
therefore,
\(\displaystyle{\left(\text{ypotenuse})^2=(\text{perpendicular})^2+(\text{base})^}{y}{p}{o}{t}{e}\nu{s}{e}\right\rbrace}{)}^{{2}}={\left(\text{perpendicular}\right)}^{{2}}+{\left(\text{base}\right)}^{{2}}\)
\(\displaystyle{\left(\text{hypotenuse}\right)}^{{2}}={\left({3}\right)}^{{2}}+{\left({4}\right)}^{{2}}\)
\(\displaystyle{\left(\text{hypotenuse}\right)}^{{2}}={9}+{16}\)
\(\displaystyle{\left(\text{hypotenuse}\right)}^{{2}}={25}\)
\(\displaystyle{\left(\text{hypotenuse}\right)}=\sqrt{{25}}\)
\(\displaystyle{\left(\text{hypotenuse}\right)}={5}\)
therefore hypotenuse=5
therefore,
\(\displaystyle{\left|{\sin{\theta}}\right|}\)=(perpendicular)/(hypotenuse)=\(\displaystyle\frac{{3}}{{5}}\)
\(\displaystyle{\left|{\cos{\theta}}\right|}\)=(base)/(hypotenuse)=\(\displaystyle\frac{{4}}{{5}}\)
\(\displaystyle{\left|{\tan{\theta}}\right|}\)=(perpendicular)/(base)=\(\displaystyle\frac{{3}}{{4}}\)
\(\displaystyle{\left|{\cos{{e}}}{c}{t}\hat{{e}}\right|}\)=(hypotenuse)/(perpendicular)=\(\displaystyle\frac{{5}}{{3}}\)
\(\displaystyle{\left|{\sec{\theta}}\right|}\)=(hypotenuse)/((base)=\(\displaystyle\frac{{5}}{{4}}\)
as \(\displaystyle{\cot{\theta}}=−{43}{\quad\text{and}\quad}{\sin{\theta}}{<}{0}\)</span>
that implies both cotangent and sine function have negative values.
as we know that:
(1) in the first quadrant all trigonometric functions are positive.
(2) in the second quadrant sine and cosecant trigonometric functions are positive and rest of trigonometric functions are negative.
(3) in the third quadrant tangent and cotangent trigonometric functions are positive and rest of trigonometric functions are negative.
(4) in the fourth quadrant cosine and secant trigonometric functions are positive and rest of trigonometric functions are negative.
as both cotangent and sine function have negative values.
therefore θ is lying in the fourth quadrant.
therefore cosine and secant trigonometric functions will be positive and rest of trigonometric functions will be negative.
therefore,
\(\displaystyle{\left|{\sin{\theta}}\right|}\)=(perpendicular)/(hypotenuse)=\(\displaystyle-\frac{{3}}{{5}}\)
\(\displaystyle{\left|{\cos{\theta}}\right|}\)=(base)/(hypotenuse)=\(\displaystyle\frac{{4}}{{5}}\)
\(\displaystyle{\left|{\tan{\theta}}\right|}\)=(perpendicular)/(base)=\(\displaystyle-\frac{{3}}{{4}}\)
\(\displaystyle{\left|{\cos{{e}}}{c}{t}\hat{{e}}\right|}\)=(hypotenuse)/(perpendicular)=\(\displaystyle-\frac{{5}}{{3}}\)
\(\displaystyle{\left|{\sec{\theta}}\right|}\)=(hypotenuse)/((base)=\(\displaystyle\frac{{5}}{{4}}\)
0

Relevant Questions

asked 2021-03-06
Given the values for sin t and cos t, use reciprocal and quotient identities to find the values of the other trigonometric functions of t.
\(\displaystyle{\sin{{t}}}=\frac{{3}}{{4}}{\quad\text{and}\quad}{\cos{{t}}}=\frac{\sqrt{{7}}}{{4}}\)
asked 2021-01-04


\(\sec \theta = -3, \tan \theta > 0\). Find the exact value of the remaining trigonometric functions of
\(\theta\).

asked 2021-03-06
Sketch a right triangle corresponding to the trigonometric function of the acute angle theta. Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of theta. \(\displaystyle{\cos{\theta}}=\frac{{21}}{{5}}\)
asked 2021-02-09
Given the following information about one trigonometric function, evaluate the other five functions.
\(\displaystyle{\cos{{u}}}=\frac{{5}}{{13}}\) , where \(\displaystyle{0}\le{u}\le\frac{\pi}{{2}}.\)
asked 2020-12-28
If \(f(\theta) = \sin \theta = 0.2\)
Find \(f(\theta + \pi)\)
asked 2020-11-26
Write the trigonometric expression \(\displaystyle{\cos{{\left({{\sin}^{{-{1}}}{x}}-{{\cos}^{{-{1}}}{y}}\right)}}}\) as an algebraic expression (that is, without any trigonometric functions). Assume that x and y are positive and in the domain of the given inverse trigonometric function.
asked 2021-03-02
Use the figures to find the exact value of the trigonometric function \(\displaystyle{\tan{{2}}}\theta\).
asked 2021-02-12
The question asks for the exact value of the trigonometric function at the given real number:
\(\displaystyle{\sin{{\left(\frac{{{3}\pi}}{{4}}\right)}}}\)
asked 2021-01-31
Use a calculator to find the value of the trigonometric function \(\displaystyle{\sin{{\left(\frac{{{3}\pi}}{{10}}\right)}}}\) to four decimal places.
asked 2021-01-05
Find derivative of trigonometric function \(\displaystyle{y}=\frac{{{3}{\left({1}-{\sin{{x}}}\right)}}}{{{2}{\cos{{x}}}}}\)
...