# Does the following expand to the following log_6(11^6root[3](12)) = 6 log_6(11) + log_6 (root[3](12))

Matilda Fox 2022-07-18 Answered
Expansion of Logarithms with Cube Roots
Does the following expand to the following
${\mathrm{log}}_{6}\left({11}^{6}\sqrt[3]{12}\right)$
= $6{\mathrm{log}}_{6}\left(11\right)+{\mathrm{log}}_{6}\left(\sqrt[3]{12}\right)$
You can still ask an expert for help

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

kartonaun
Yes and this is equal to
$6{\mathrm{log}}_{6}\left(11\right)+\frac{1}{3}\left(\mathrm{log}\left(2\right)+1\right)$
###### Did you like this example?
Bruno Thompson
First note that
$\sqrt[n]{x}={x}^{\frac{1}{n}}$
${\mathrm{log}}_{b}\left(xy\right)={\mathrm{log}}_{b}\left(x\right)+{\mathrm{log}}_{b}\left(y\right)$
${\mathrm{log}}_{b}\left({x}^{n}\right)=n{\mathrm{log}}_{b}\left(x\right)$
${\mathrm{log}}_{b}\left(x\right)=\frac{{\mathrm{log}}_{10}\left(x\right)}{{\mathrm{log}}_{10}\left(b\right)}=\frac{\mathrm{log}\left(x\right)}{\mathrm{log}\left(b\right)}$
So then
${\mathrm{log}}_{6}\left({11}^{6}\cdot \sqrt[3]{12}\right)={\mathrm{log}}_{6}\left({11}^{6}\cdot {12}^{\frac{1}{3}}\right)={\mathrm{log}}_{6}\left({11}^{6}\right)+{\mathrm{log}}_{6}\left({12}^{\frac{1}{3}}\right)=6{\mathrm{log}}_{6}\left(11\right)+\frac{1}{3}{\mathrm{log}}_{6}\left(12\right)$
Or perhaps
$\frac{6\mathrm{log}\left(11\right)}{\mathrm{log}\left(6\right)}+\frac{\mathrm{log}\left(12\right)}{3\mathrm{log}\left(6\right)}$