# In the froup Z_12, find |a|, |b|, and |a+b| a=3, b=8

Question
Abstract algebra
In the froup $$\displaystyle{Z}_{{12}}$$, find |a|, |b|, and |a+b|
a=3, b=8

2020-12-31
Consider the provided qustion,
If a $$\displaystyle\in{Z}_{{n}}$$ then |a|=n/(gcd(a,n))ZSK
here given $$\displaystyle{Z}_{{12}}$$. So, n=12
Given a = 6, b = 2
So, a + b = 6 + 2 = 8
$$\displaystyle{\left|{a}\right|}={\left|{3}\right|}=\frac{{12}}{{{\gcd{{\left({3},{12}\right)}}}}}=\frac{{12}}{{3}}={4}$$
$$\displaystyle{\left|{b}\right|}={\left|{8}\right|}=\frac{{12}}{{{\gcd{{\left({8},{12}\right)}}}}}=\frac{{12}}{{4}}={3}$$
$$\displaystyle{\left|{a}+{b}\right|}={\left|{11}\right|}=\frac{{12}}{{{\gcd{{\left({11},{12}\right)}}}}}=\frac{{12}}{{1}}={12}$$

### Relevant Questions

In the froup $$\displaystyle{Z}_{{12}}$$, find |a|, |b|, and |a+b|
a=5, b=4
In the froup $$\displaystyle{Z}_{{12}}$$, find |a|, |b|, and |a+b|
a=6, b=2
Suppose G is a group and H is a normal subgroup of G. Prove or disprove ass appropirate. If G is cyclic, then $$\displaystyle\frac{{G}}{{H}}$$ is cyclic.
Definition: A subgroup H of a group is said to be a normal subgroup of G it for all $$\displaystyle{a}\in{G}$$, aH = Ha
Definition: Suppose G is group, and H a normal subgruop og G. THe froup consisting of the set $$\displaystyle\frac{{G}}{{H}}$$ with operation defined by (aH)(bH)-(ab)H is called the quotient of G by H.
How to find the value of U(n) on abstract algebra
Example U(8) = {1,3,5,7}
Let $$\displaystyle{G}={S}_{{3}}{\quad\text{and}\quad}{H}={\left\lbrace{\left({1}\right)}{\left({2}\right)}{\left({3}\right)},{\left({12}\right)}{\left({3}\right)}\right\rbrace}$$. Find the left cosets of $$\displaystyle{H}\in{G}$$.
Suppose G is a group, H a subgroup of G, and a and b elements of G. If $$\displaystyle{a}\in{b}{H}$$ then $$\displaystyle{b}\in{a}{H}$$.
Find the inverse of $$\displaystyle{x}+{1}\in\mathbb{Q}\frac{{{x}}}{{{x}^{{3}}-{2}}}$$. Explain why this is the same as finding the inverse of $$\displaystyle{\sqrt[{{3}}]{{{2}}}}\in\mathbb{R}$$.
An nth root of unity epsilon is an element such that $$\displaystyle\epsilon^{{n}}={1}$$. We say that epsilon is primitive if every nth root of unity is $$\displaystyle\epsilon^{{k}}$$ for some k. Show that there are primitive nth roots of unity $$\displaystyle\epsilon_{{n}}\in\mathbb{C}$$ for all n, and find the degree of $$\displaystyle\mathbb{Q}\rightarrow\mathbb{Q}{\left(\epsilon_{{n}}\right)}$$ for $$\displaystyle{1}\le{n}\le{6}$$