Let $A=\{0,2,3\},B=\{2,3\},C=\{1,5,9\}$, and let the universal set be $U=\{0,1,2,...,9\}$. Determine:

$a)A\cap B\phantom{\rule{0ex}{0ex}}b)A\cup B\phantom{\rule{0ex}{0ex}}c)B\cup A\phantom{\rule{0ex}{0ex}}d)A\cup C\phantom{\rule{0ex}{0ex}}e)A-B\phantom{\rule{0ex}{0ex}}f)B-A\phantom{\rule{0ex}{0ex}}g){A}^{c}\phantom{\rule{0ex}{0ex}}h){C}^{c}\phantom{\rule{0ex}{0ex}}i)A\cap C\phantom{\rule{0ex}{0ex}}j)A\oplus B$

$a)A\cap B\phantom{\rule{0ex}{0ex}}b)A\cup B\phantom{\rule{0ex}{0ex}}c)B\cup A\phantom{\rule{0ex}{0ex}}d)A\cup C\phantom{\rule{0ex}{0ex}}e)A-B\phantom{\rule{0ex}{0ex}}f)B-A\phantom{\rule{0ex}{0ex}}g){A}^{c}\phantom{\rule{0ex}{0ex}}h){C}^{c}\phantom{\rule{0ex}{0ex}}i)A\cap C\phantom{\rule{0ex}{0ex}}j)A\oplus B$