$\mathrm{sec}0=-1.5,\frac{\pi}{2}<0<\pi $

uplakanimkk
2022-07-13
Answered

Find the remaining trigonometric ratios using the given value:

$\mathrm{sec}0=-1.5,\frac{\pi}{2}<0<\pi $

$\mathrm{sec}0=-1.5,\frac{\pi}{2}<0<\pi $

You can still ask an expert for help

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-06-09

Solve the inequality $\mathrm{sin}(x)\mathrm{sin}(3x)>\frac{1}{4}$

One simple observation is that both x and 3x have to positive or negative simultaneously. I tried expanding $\mathrm{sin}(3x)$ by the regular indentity as :

$\mathrm{sin}(x)\times {\textstyle (}3\mathrm{sin}(x)-4{\mathrm{sin}}^{3}(x){\textstyle )}>\frac{1}{4}$

$\phantom{\rule{thickmathspace}{0ex}}\u27f9\phantom{\rule{thickmathspace}{0ex}}{\mathrm{sin}}^{2}(x)\times {\textstyle (}3-4{\mathrm{sin}}^{2}(x){\textstyle )}>\frac{1}{4}$

One simple observation is that both x and 3x have to positive or negative simultaneously. I tried expanding $\mathrm{sin}(3x)$ by the regular indentity as :

$\mathrm{sin}(x)\times {\textstyle (}3\mathrm{sin}(x)-4{\mathrm{sin}}^{3}(x){\textstyle )}>\frac{1}{4}$

$\phantom{\rule{thickmathspace}{0ex}}\u27f9\phantom{\rule{thickmathspace}{0ex}}{\mathrm{sin}}^{2}(x)\times {\textstyle (}3-4{\mathrm{sin}}^{2}(x){\textstyle )}>\frac{1}{4}$

asked 2022-08-30

If ${\mathrm{cos}}^{-1}(a)=0$ and ${\mathrm{sin}}^{-1}(\pi /6)=b$,

What is the exact value of $\mathrm{sin}(a+b)$?

What is the exact value of $\mathrm{sin}(a+b)$?

asked 2022-03-25

Determining derivatives of trigonometric functions

$\underset{x\to \frac{\pi}{4}}{lim}\frac{\mathrm{tan}x-1}{4x-\pi}$

the value of f'(a)?

the value of f'(a)?

asked 2022-04-09

How do you solve $\frac{2}{3\sqrt{2}}=\mathrm{cos}\left(\frac{x}{2}\right)$

asked 2022-05-01

Prove the trigonometric identity:

$\frac{({\mathrm{cos}}^{3}x-{\mathrm{sin}}^{3}x)}{(\mathrm{cos}x-\mathrm{sin}x)}=\frac{(2+\mathrm{sin}2x)}{2}$

asked 2022-04-08

I was evaluating the range of this function in real numbers:

$f\left(x\right)=(x+\sqrt{x})(10-x+\sqrt{10-x})$