Point-slope form of line:

\(\displaystyle{\left({y}_{{2}}-{y}_{{1}}\right)}={m}{\left({x}_{{2}}-{x}_{{1}}\right)}\)

So, by the Point-Slope form of line the equation of line is given below:

\(\displaystyle{\left(-{9}-{8}\right)}={m}{\left({6}-{4}\right)}\)

\(\displaystyle-{17}={m}\times{2}\)

\(\displaystyle{2}{m}=-{17}\)

\(\displaystyle{m}=-\frac{{17}}{{2}}\)

Now \(\displaystyle{m}=-\frac{{17}}{{2}}\) and take any points to find the linear equation.

\(\displaystyle{\left({x}_{{1}},{y}_{{1}}\right)}={\left({4},{8}\right)}{\quad\text{and}\quad}{m}=-\frac{{17}}{{2}}\)

\(\displaystyle{\left({y}-{y}_{{1}}\right)}={m}{\left({x}-{x}_{{1}}\right)}\)

\(\displaystyle{\left({y}-{8}\right)}=-\frac{{17}}{{2}}{\left({x}-{4}\right)}\)

\(\displaystyle{\left({y}-{8}\right)}=\frac{{-{17}{x}}}{{2}}+{34}\)

\(\displaystyle{y}=\frac{{-{17}{x}}}{{2}}+{34}+{8}\)

\(\displaystyle{y}=\frac{{-{17}{x}}}{{2}}+{42}\)

\(\displaystyle{y}=\frac{{-{17}{x}+{84}}}{{2}}\)

\(\displaystyle{2}{y}=-{17}{x}_{{84}}\)

So, the graph is given below: