\(\displaystyle\mu={53.9}\)

\(\displaystyle\sigma={28.5}\)

proportion= 0.5000

proportion left 0.5000 is equally distributed both left and right side of normal curve

z value at \(\displaystyle{0.25}=\pm{0.674}{\left(\frac{{0.50}}{{2}}\right)}\)

\(\displaystyle{z}=\frac{{{x}-\mu}}{\sigma}\)

so, \(\displaystyle{X}={z}\sigma+\mu=\)

\(\displaystyle{X}{1}=-{0.674}\cdot{28.5}+{53.9}={34.68}\)

\(\displaystyle{X}{2}={0.674}\cdot{28.5}+{53.9}={73.12}\)

\(\displaystyle\sigma={28.5}\)

proportion= 0.5000

proportion left 0.5000 is equally distributed both left and right side of normal curve

z value at \(\displaystyle{0.25}=\pm{0.674}{\left(\frac{{0.50}}{{2}}\right)}\)

\(\displaystyle{z}=\frac{{{x}-\mu}}{\sigma}\)

so, \(\displaystyle{X}={z}\sigma+\mu=\)

\(\displaystyle{X}{1}=-{0.674}\cdot{28.5}+{53.9}={34.68}\)

\(\displaystyle{X}{2}={0.674}\cdot{28.5}+{53.9}={73.12}\)