$2({\mathrm{sin}}^{6}x+{\mathrm{cos}}^{6}x)-3({\mathrm{sin}}^{4}x+{\mathrm{cos}}^{4}x)+1$

ban1ka1u
2022-07-12
Answered

Here is the expression:

$2({\mathrm{sin}}^{6}x+{\mathrm{cos}}^{6}x)-3({\mathrm{sin}}^{4}x+{\mathrm{cos}}^{4}x)+1$

$2({\mathrm{sin}}^{6}x+{\mathrm{cos}}^{6}x)-3({\mathrm{sin}}^{4}x+{\mathrm{cos}}^{4}x)+1$

You can still ask an expert for help

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-04-25

Simplify this expression with $\mathrm{cos}$ and $\mathrm{sin}$

$\frac{\mathrm{cos}12x}{\mathrm{cos}4x}-\frac{\mathrm{sin}12x}{\mathrm{sin}4x}=\frac{{\mathrm{cos}}^{2}6x-{\mathrm{sin}}^{2}6x}{{\mathrm{cos}}^{2}2x-{\mathrm{sin}}^{2}2x}-\frac{2\mathrm{sin}6x\mathrm{cos}6x}{2\mathrm{sin}2x\mathrm{cos}2x}$

asked 2022-05-22

Prove that $\mathrm{sin}\frac{\pi}{7}\mathrm{sin}\frac{2\pi}{7}\mathrm{sin}\frac{3\pi}{7}=\frac{\sqrt{7}}{8}$

asked 2022-03-26

How can I solve $\text{cosh}\left(z\right)=2$ for $z\in \mathbb{C}$ ? My steps have only led to values of z which are not imaginary, those being $\mathrm{ln}(2+\sqrt{3})$ and $\mathrm{ln}(2-\sqrt{3})$ . How do I find solutions to the equations that are imaginary?

asked 2022-04-10

Trigonometric equation $3{\mathrm{sin}}^{2}\left(x\right)+{\mathrm{sin}}^{2}\left(3x\right)=3\mathrm{sin}x\cdot {\mathrm{sin}}^{2}\left(3x\right)$

asked 2022-07-12

Given $\mathrm{tan}\beta =\frac{n\mathrm{sin}\alpha \mathrm{cos}\alpha}{1-n{\mathrm{sin}}^{2}\alpha}$, show that $\mathrm{tan}(\alpha -\beta )=(1-n)\mathrm{tan}\alpha $

asked 2022-04-07

How to proof: $\mathrm{cos}\left({10}^{\circ}\right)\cdot \mathrm{cos}\left({30}^{\circ}\right)\cdot \mathrm{cos}\left({50}^{\circ}\right)\cdot \mathrm{cos}\left({70}^{\circ}\right)=\frac{3}{16}$