Proving convergence of:

$\sum _{n=0}^{\mathrm{\infty}}\frac{\mathrm{cos}\left(n\pi \right)}{3n!+1}$

$\sum _{n=0}^{\mathrm{\infty}}\frac{\mathrm{cos}\left(n\pi \right)}{3n!+1}$

Dayanara Terry
2022-07-12
Answered

Proving convergence of:

$\sum _{n=0}^{\mathrm{\infty}}\frac{\mathrm{cos}\left(n\pi \right)}{3n!+1}$

$\sum _{n=0}^{\mathrm{\infty}}\frac{\mathrm{cos}\left(n\pi \right)}{3n!+1}$

You can still ask an expert for help

asked 2022-01-22

How to prove that

$\sum _{n=1}^{\mathrm{\infty}}\frac{1}{{4}^{n}{\mathrm{cos}}^{2}\frac{x}{{2}^{n}}}=\frac{1}{{\mathrm{sin}}^{2}x}-\frac{1}{{x}^{2}}$

asked 2020-12-15

Find the sum of the convergent series.

$\sum _{n=0}^{\mathrm{\infty}}(-\frac{1}{5}{)}^{n}$

asked 2021-12-17

Use the summation formulas to rewrite the expression without the summation notation. Use the result to find the sums for $n=10,100,1000,$ and $10,000.\text{}\sum _{i=1}^{n}\frac{2i+1}{{n}^{2}}$

asked 2022-02-23

Consider, for all $n\in \mathbb{N}$ :

${u}_{n}={\int}_{0}^{1}(1-{(1-{t}^{n})}^{\frac{1}{n}})dt$

Does the series$\sum _{n\ge 1}{u}_{n}$ converges ?

Does the series

asked 2021-02-09

Find the sum of the infinite geometric series.

$\sum _{i=1}^{\mathrm{\infty}}12(-0.7{)}^{i-1}$

asked 2022-01-23

For $a\in \mathbb{R}$ , show that $\sum _{k\ge 0}\frac{1}{{k}^{2}+k-\alpha}=\frac{\pi}{\sqrt{4\alpha +1}}\mathrm{tan}\left(\frac{1}{2}\pi \sqrt{4\alpha +1}\right)$

asked 2022-02-25

Does the following series absolutely converge, conditionally converge or diverge?

$\sum _{n=1}^{+\mathrm{\infty}}\mathrm{sin}\left({n}^{2}\right)\mathrm{sin}\left(\frac{1}{{n}^{2}}\right)$