Write first and second partial derivatives f(x,y)=2xy+9x^2y^3+7e^(2y)+16 a)f_x b)f_(xx) c)f_(xy) d)f_y e)f_(yy) f)f_(yx)

Question
Multivariable functions
asked 2021-02-02
Write first and second partial derivatives
\(\displaystyle{f{{\left({x},{y}\right)}}}={2}{x}{y}+{9}{x}^{{2}}{y}^{{3}}+{7}{e}^{{{2}{y}}}+{16}\)
a)\(\displaystyle{f}_{{x}}\)
b)\(\displaystyle{f}_{{\times}}\)
c)\(\displaystyle{f}_{{{x}{y}}}\)
d)\(\displaystyle{f}_{{y}}\)
e)\(\displaystyle{f}_{{{y}{y}}}\)
f)\(\displaystyle{f}_{{{y}{x}}}\)

Answers (1)

2021-02-03
a) \(\displaystyle\frac{{\partial{f}}}{{\partial{x}}}=\frac{\partial}{{\partial{x}}}{\left[{2}{x}{y}+{9}{x}^{{2}}{y}^{{3}}+{7}{e}^{{{2}{y}}}+{16}\right]}\)
\(\displaystyle{f}_{{x}}={2}{y}+{18}{x}{y}^{{3}}+{0}+{0}={2}{y}+{18}{x}{y}^{{3}}\)
\(\displaystyle\Rightarrow{f}_{{x}}={2}{y}+{18}{x}{y}^{{3}}\)
b) \(\displaystyle{f}_{{\times}}=\frac{{\partial{f}_{{x}}}}{{\partial{x}}}=\frac{\partial}{{\partial{x}}}{\left[{9}{y}+{18}{x}{y}^{{3}}\right]}\)
\(\displaystyle={0}+{18}{y}^{{3}}={18}{y}^{{3}}\)
\(\displaystyle{f}_{{\times}}={18}{y}^{{3}}\)
с) \(\displaystyle{f}_{{{x}{y}}}=\frac{{\partial{f}_{{x}}}}{{\partial{y}}}=\frac{\partial}{{\partial{y}}}{\left[{2}{y}+{18}{x}{y}^{{3}}\right]}\)
\(\displaystyle{f}_{{{x}{y}}}={2}+{18}{x}\cdot{3}{y}^{{2}}\)
\(\displaystyle{f}_{{{x}{y}}}={2}+{54}{x}{6}^{{2}}\)
d) \(\displaystyle{f}_{{y}}=\frac{{\partial{f}}}{{\partial{y}}}=\frac{\partial}{{\partial{y}}}{\left[{2}{x}{y}+{9}{x}^{{2}}{y}^{{3}}+{4}{e}^{{{2}{y}}}+{16}\right]}\)
\(\displaystyle{f}_{{y}}={2}{x}+{9}{x}^{{2}}\cdot{3}{y}^{{2}}+{7}\cdot{2}{e}^{{{2}{y}}}+{0}\)
\(\displaystyle{f}_{{y}}={9}{x}+{27}{x}^{{2}}{y}+{14}{e}^{{2}}{y}\)
e) \(\displaystyle{f}_{{{y}{y}}}=\frac{\partial}{{\partial{y}}}{\left[{2}{x}+{27}{x}^{{2}}{y}^{{2}}+{14}{e}^{{{2}{y}}}\right.}\)
\(\displaystyle={0}+{27}{x}^{{2}}{x}^{{y}}^{2}+{14}\cdot{2}{e}^{{{2}{y}}}\)
\(\displaystyle{f}_{{y}}{y}={54}{x}^{{2}}\cdot{2}{y}+{28}{e}^{{{2}{y}}}\)
f) \(\displaystyle{f}_{{{y}{x}}}=\frac{{\partial{f}_{{y}}}}{{\partial{x}}}=\frac{\partial}{{\partial{x}}}{\left[{2}{x}+{27}{x}^{{y}}^{2}+{14}{e}^{{{2}{y}}}\right]}\)
\(\displaystyle{f}_{{y}}{y}={2}={54}{x}{y}^{{2}}\)
0

Relevant Questions

asked 2020-12-17
A surface is represented by the following multivariable function,
\(\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{1}}{{3}}{x}^{{3}}+{y}^{{2}}-{2}{x}{y}-{6}{x}-{3}{y}+{4}\)
a) Calculate \(\displaystyle{f}_{{\times}},{f}_{{{y}{x}}},{f}_{{{x}{y}}}{\quad\text{and}\quad}{f}_{{{y}{y}}}\)
b) Calculate coordinates of stationary points.
c) Classify all stationary points.
asked 2021-03-01
Write first and second partial derivatives
\(\displaystyle{g{{\left({r},{t}\right)}}}={t}{\ln{{r}}}+{11}{r}{t}^{{7}}-{5}{\left({8}^{{r}}\right)}-{t}{r}\)
a)\(\displaystyle{g}_{{r}}\)
b)\(\displaystyle{g}_{{{r}{r}}}\)
c)\(\displaystyle{g}_{{{r}{t}}}\)
d)\(\displaystyle{g}_{{t}}\)
e)\(\displaystyle{g}_{{{\mathtt}}}\)
asked 2020-11-20
Consider this multivariable function. \(\displaystyle{f{{\left({x},{y}\right)}}}={y}{e}^{{{3}{x}}}+{y}^{{2}}\)
a) Find \(\displaystyle{{f}_{{y}}{\left({x},{y}\right)}}\)
b) What is value of \(\displaystyle{{f}_{{\times}}{\left({0},{3}\right)}}\)?
asked 2021-03-02
COnsider the multivariable function \(\displaystyle{g{{\left({x},{y}\right)}}}={x}^{{2}}-{3}{y}^{{4}}{x}^{{2}}+{\sin{{\left({x}{y}\right)}}}\). Find the following partial derivatives: \(\displaystyle{g}_{{x}}.{g}_{{y}},{g}_{{{x}{y}}},{g{{\left(\times\right)}}},{g{{\left({y}{y}\right)}}}\).
asked 2021-03-18
Write formulas for the indicated partial derivatives for the multivariable function.
\(\displaystyle{f{{\left({x},{y}\right)}}}={7}{x}^{{2}}+{9}{x}{y}+{4}{y}^{{3}}\)
a)\(\displaystyle\frac{{\partial{f}}}{{\partial{x}}}\)
b)(delf)/(dely)ZSK
c)\(\displaystyle\frac{{\partial{f}}}{{\partial{x}}}{\mid}_{{{y}={9}}}\)
asked 2021-02-22
Write formulas for the indicated partial derivatives for the multivariable function. \(\displaystyle{g{{\left({x},{y},{z}\right)}}}={3.1}{x}^{{2}}{y}{z}^{{2}}+{2.7}{x}^{{y}}+{z}\)
a)\(\displaystyle{g}_{{x}}\)
b)\(\displaystyle{g}_{{y}}\)
c)\(\displaystyle{g}_{{z}}\)
asked 2020-11-02
a) Find the function's domain .
b) Find the function's range.
c) Find the boundary of the function's domain.
d) Determine if the domain is an open region, a closed region , or neither.
e) Decide if the domain is bounded or unbounded.
for: \(\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{1}}{{{\left({16}-{x}^{{2}}-{y}^{{2}}\right)}^{{\frac{{1}}{{2}}}}}}\)
asked 2020-11-23
Write formulas for the indicated partial derivatives for the multivariable function.
\(\displaystyle{k}{\left({a},{b}\right)}={3}{a}{b}^{{4}}+{8}{\left({1.4}^{{b}}\right)}\)
a) \(\displaystyle\frac{{\partial{k}}}{{\partial{a}}}\)
b) \(\displaystyle\frac{{\partial{k}}}{{\partial{b}}}\)
c) \(\displaystyle\frac{{\partial{k}}}{{\partial{b}}}{\mid}_{{{a}={3}}}\)
asked 2020-12-12
Mixed Partial Derivatives If f is a function of a and y such that \(\displaystyle{f}_{{{x}{y}}}{\quad\text{and}\quad}{f}_{{{y}{x}}}\) are continuous, what is the relationship between the mixed partial derivatives?
asked 2021-01-27
Write formulas for the indicated partial derivatives for the multivariable function.
\(\displaystyle{g{{\left({k},{m}\right)}}}={k}^{{4}}{m}^{{5}}−{3}{k}{m}\)
a)\(\displaystyle{g}_{{k}}\)
b)\(\displaystyle{g}_{{m}}\)
c)\(\displaystyle{g}_{{m}}{\mid}_{{{k}={2}}}\)
...