What is the polar form of $(11,-99)$ ?

Rebecca Villa
2022-07-11
Answered

What is the polar form of $(11,-99)$ ?

You can still ask an expert for help

karburitc

Answered 2022-07-12
Author has **7** answers

Step 1

Cartesian form: $(x,y)$

Polar form: $(r,\theta )$

$r=\sqrt{{x}^{2}+{y}^{2}}$

$r=\sqrt{{11}^{2}+{99}^{2}}=11\sqrt{82}\approx 99.61$

$\theta ={\mathrm{tan}}^{-1}\left(\frac{y}{x}\right)$

$\theta ={\mathrm{tan}}^{-1}(-\frac{99}{11})$

$\theta ={\mathrm{tan}}^{-1}(-9)\approx -1.46$

Exact

Cartesian form: $(x,y)$

Polar form: $(r,\theta )$

$r=\sqrt{{x}^{2}+{y}^{2}}$

$r=\sqrt{{11}^{2}+{99}^{2}}=11\sqrt{82}\approx 99.61$

$\theta ={\mathrm{tan}}^{-1}\left(\frac{y}{x}\right)$

$\theta ={\mathrm{tan}}^{-1}(-\frac{99}{11})$

$\theta ={\mathrm{tan}}^{-1}(-9)\approx -1.46$

Exact

asked 2021-06-11

What is the area of the parallelogram with vertices A(-3, 0), B(-1, 5), C(7, 4), and D(5, -1).

asked 2020-11-02

Curves to parametric equations Find parametric equations for the following curves. Include an interval for the parameter values. Answers are not unique.
The line segment starting at $P(-1,\text{}-3)\text{}\text{and ending at}\text{}Q(6,\text{}-16)$

asked 2022-06-22

A curve C is defined by the parametric equations: $x={t}^{2}$ and $y={t}^{3}-3t$, how do you show that C has two tangents at the point (3,0) and find their equations?

asked 2022-06-13

Parametric function differentiation problem

$x=a\mathrm{cos}g(t)\text{and}y=b\mathrm{sin}g(t)$

$x{y}^{2}\frac{{d}^{2}y}{d{x}^{2}}={b}^{2}\frac{dy}{dx}$

$x=a\mathrm{cos}g(t)\text{and}y=b\mathrm{sin}g(t)$

$x{y}^{2}\frac{{d}^{2}y}{d{x}^{2}}={b}^{2}\frac{dy}{dx}$

asked 2022-04-10

Let $x={e}^{t}+3$ and $y={e}^{2t}+6{e}^{t}+9$ how do you eliminate the parameter and write y in terms of x?

asked 2022-06-23

How do you find parametric equations for the tangent line to the curve with the given parametric equations at the specified point $x=1+10\cdot \sqrt{t}$, $y={t}^{5}-t$, and $z={t}^{5}+t$; (11, 0, 2)?

asked 2020-11-06

Determine the area of the region below the parametric curve given by the set of parametric equations. For each
problem you may assume that each curve traces out exactly once from right to left for the given range of t. For these problems you
should only use the given parametric equations to determine the answer.
1.$x={t}^{2}+5t-1y=40-{t}^{2}-2\le t\le 5$
2.$x=3co{s}^{2}(t)\u2014si{n}^{2}(t)y=6+cos(t)-\frac{\pi}{2}\ne t\le 0$
3.$x={e}^{\frac{1}{4}t}\u20142y=4+{e}^{\frac{1}{4t}}\u2014{e}^{\frac{1}{4}t}-6\le t\le 1$