 # If b = sin &#x2061;<!-- ⁡ --> ( 40 &#x2218;<!-- ∘ --> </msup> + &#x03B1; uplakanimkk 2022-07-07 Answered
If $b=\mathrm{sin}\left({40}^{\circ }+\alpha \right)$ and ${0}^{\circ }<\alpha <{45}^{\circ }$, compute $\mathrm{cos}\left({70}^{\circ }+\alpha \right)$ in terms of b
I wrote $\mathrm{cos}\left({70}^{\circ }+\alpha \right)=\mathrm{cos}\left({30}^{\circ }+{40}^{\circ }+\alpha \right)=\frac{\sqrt{3}}{2}\mathrm{cos}\left({40}^{\circ }+\alpha \right)-\frac{1}{2}b,$, this didn't work. Then expanded $\mathrm{sin}\left({40}^{\circ }+\alpha \right)$ and $\mathrm{cos}\left({70}^{\circ }+\alpha \right)$ in the hope of getting a hint. Still and all, I couldn't get the answer up above.
You can still ask an expert for help

## Want to know more about Trigonometry?

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Allison Pena
$\mathrm{cos}\left({70}^{\circ }+\alpha \right)=\mathrm{cos}\left({40}^{\circ }+\alpha +{30}^{\circ }\right)=$
$\mathrm{cos}\left({40}^{\circ }+\alpha \right)\mathrm{cos}\left({30}^{\circ }\right)-\mathrm{sin}\left({40}^{\circ }+\alpha \right)\mathrm{sin}\left({30}^{\circ }\right)=$
$\sqrt{1-\mathrm{sin}\left({40}^{\circ }+\alpha {\right)}^{2}}\cdot \frac{\sqrt{3}}{2}-\frac{b}{2}$
$=\sqrt{1-{b}^{2}}\cdot \frac{\sqrt{3}}{2}-\frac{b}{2}$

We have step-by-step solutions for your answer!