# Consider this multivariable function. f(x,y)=ye^(3x)+y^2 a) Find f_y(x,y) b) What is value of f_(xx)(0,3)?

Question
Multivariable functions
Consider this multivariable function. $$\displaystyle{f{{\left({x},{y}\right)}}}={y}{e}^{{{3}{x}}}+{y}^{{2}}$$
a) Find $$\displaystyle{{f}_{{y}}{\left({x},{y}\right)}}$$
b) What is value of $$\displaystyle{{f}_{{\times}}{\left({0},{3}\right)}}$$?

2020-11-21
a) $$\displaystyle{{f}_{{y}}{\left({x},{y}\right)}}=\frac{{\partial{f}}}{{\partial{y}}}=\frac{\partial}{{\partial{y}}}{\left[{y}{e}^{{{3}{x}}}+{y}^{{2}}\right]}$$
$$\displaystyle{{f}_{{y}}{\left({x},{y}\right)}}={8}{e}^{{{3}{x}}}+{2}{y}$$
b) $$\displaystyle\frac{{\partial{f}}}{{\partial{x}}}={f}_{{x}}=\frac{\partial}{{\partial{x}}}{\left[{y}{e}^{{{3}{x}}}+{y}^{{2}}\right]}$$
$$\displaystyle={3}{e}^{{{3}{x}}}{y}+{0}$$
$$\displaystyle\frac{{\partial{f}}}{{\partial{x}}}={3}{y}{e}^{{{3}{x}}}$$
$$\displaystyle\frac{{\partial^{{2}}{f}}}{{\partial{x}^{{2}}}}={{f}_{{{x}{y}}}{\left({x},{y}\right)}}=\frac{\partial}{{\partial{x}}}{\left[{3}{y}{e}^{{{3}{x}}}\right]}$$
$$\displaystyle={9}{y}{e}^{{{3}{x}}}+{0}$$
$$\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}={9}{y}{e}^{{{3}{x}}}$$
$$\displaystyle{{f}_{{\times}}{\left({0},{3}\right)}}={9}\times{3}{e}^{{0}}={27}$$

### Relevant Questions

Consider this multivariable function. f(x,y)=xy+2x+y−36
a) What is the value of f(2,−3)?
b) Find all x-values such that f (x,x) = 0

A surface is represented by the following multivariable function,
$$\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{1}}{{3}}{x}^{{3}}+{y}^{{2}}-{2}{x}{y}-{6}{x}-{3}{y}+{4}$$
a) Calculate $$\displaystyle{f}_{{x x}},{f}_{{{y}{x}}},{f}_{{{x}{y}}}{\quad\text{and}\quad}{f}_{{{y}{y}}}$$
b) Calculate coordinates of stationary points.
c) Classify all stationary points.

Comsider this, multivariable fucntion
$$\displaystyle{f{{\left({x},{y}\right)}}}={3}{x}{y}-{x}^{{2}}+{5}{y}^{{2}}-{25}$$
a)What is the value of f(-1,3)?
b)Find all x-values such that f(x,x)=0
Let X and Y be independent, continuous random variables with the same maginal probability density function, defined as
$$f_{X}(t)=f_{Y}(t)=\begin{cases}\frac{2}{t^{2}},\ t>2\\0,\ otherwise \end{cases}$$
(a)What is the joint probability density function f(x,y)?
(b)Find the probability density of W=XY. Hind: Determine the cdf of Z.
Write first and second partial derivatives
$$\displaystyle{f{{\left({x},{y}\right)}}}={2}{x}{y}+{9}{x}^{{2}}{y}^{{3}}+{7}{e}^{{{2}{y}}}+{16}$$
a)$$\displaystyle{f}_{{x}}$$
b)$$\displaystyle{f}_{{\times}}$$
c)$$\displaystyle{f}_{{{x}{y}}}$$
d)$$\displaystyle{f}_{{y}}$$
e)$$\displaystyle{f}_{{{y}{y}}}$$
f)$$\displaystyle{f}_{{{y}{x}}}$$
Find the four second-order partial derivatives.
$$\displaystyle{f{{\left({x},{y}\right)}}}={3}{x}^{{{7}}}{y}-{4}{x}{y}+{8}{y}$$
$$\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}=$$
COnsider the multivariable function $$\displaystyle{g{{\left({x},{y}\right)}}}={x}^{{2}}-{3}{y}^{{4}}{x}^{{2}}+{\sin{{\left({x}{y}\right)}}}$$. Find the following partial derivatives: $$\displaystyle{g}_{{x}}.{g}_{{y}},{g}_{{{x}{y}}},{g{{\left(\times\right)}}},{g{{\left({y}{y}\right)}}}$$.
The graph of y = f(x) contains the point (0,2), $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{-{x}}}{{{y}{e}^{{{x}^{{2}}}}}}}$$, and f(x) is greater than 0 for all x, then f(x)=
A) $$\displaystyle{3}+{e}^{{-{x}^{{2}}}}$$
B) $$\displaystyle\sqrt{{{3}}}+{e}^{{-{x}}}$$
C) $$\displaystyle{1}+{e}^{{-{x}}}$$
D) $$\displaystyle\sqrt{{{3}+{e}^{{-{x}^{{2}}}}}}$$
E) $$\displaystyle\sqrt{{{3}+{e}^{{{x}^{{2}}}}}}$$
Consider the polynomial function $$p(x)=(3x^{2}-5x-2)(x-5)(x^{2}-4)$$.