Nonexistence of a limit Investiage the limit lim_((x,y)->(0,0)) (x+y)^2/(x^2+y^2)

Nonexistence of a limit Investiage the limit $\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

pivonie8
By applying identity ${\left(a+b\right)}^{2}=\left({a}^{2}+{b}^{2}+2ab\right)$
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}=\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{x}^{2}+{y}^{2}+2xy}{{x}^{2}+{y}^{2}}$
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}=\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{x}^{2}+{y}^{2}}{{x}^{2}+{y}^{2}}+\frac{2xy}{{x}^{2}+{y}^{2}}$
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}=\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{x}^{2}+{y}^{2}}{{x}^{2}+{y}^{2}}+\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{2xy}{{x}^{2}+{y}^{2}}$
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}=\underset{\left(x,y\right)\to \left(0,0\right)}{lim}1+\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{2xy}{{x}^{2}+{y}^{2}}$
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}=1+0$
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{{\left(x+y\right)}^{2}}{{x}^{2}+{y}^{2}}=1$