Solve

$6{\mathrm{sin}}^{2}(x)+\mathrm{sin}(x)\mathrm{cos}(x)-{\mathrm{cos}}^{2}(x)=5$

$0\le x\le {360}^{\circ}$

$6{\mathrm{sin}}^{2}(x)+\mathrm{sin}(x)\mathrm{cos}(x)-{\mathrm{cos}}^{2}(x)=5$

$0\le x\le {360}^{\circ}$

Blericker74
2022-07-08
Answered

Solve

$6{\mathrm{sin}}^{2}(x)+\mathrm{sin}(x)\mathrm{cos}(x)-{\mathrm{cos}}^{2}(x)=5$

$0\le x\le {360}^{\circ}$

$6{\mathrm{sin}}^{2}(x)+\mathrm{sin}(x)\mathrm{cos}(x)-{\mathrm{cos}}^{2}(x)=5$

$0\le x\le {360}^{\circ}$

You can still ask an expert for help

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-04-29

Prove that $\mathrm{sin}\frac{\pi}{14}$ is a root of $8{x}^{3}-4{x}^{2}-4x+1=0$

asked 2022-04-28

Solve $\mathrm{tan}\left(\theta \right)+\mathrm{tan}\left(2\theta \right)=\mathrm{tan}\left(3\theta \right)$

asked 2022-06-01

$\underset{i\mapsto \mathrm{\infty}}{lim}\sum _{i=1}^{\mathrm{\infty}}\mathrm{sin}({\theta}_{i+1}-{\theta}_{i})$ = ? , where ${\theta}_{i}=\pi \sum _{j=0}^{i}\frac{1}{{(2)}^{j}}$

asked 2022-04-02

Solving $\mathrm{cos}x+\mathrm{cos}2x-\mathrm{cos}3x=1$ with the substitution $z=\mathrm{cos}x+i\mathrm{sin}x$

asked 2022-03-20

Solve the equation:

${\int}_{0}^{\frac{\pi}{4}}{\mathrm{sec}}^{4}\theta {\mathrm{tan}}^{4}\theta d\theta$

asked 2022-03-17

A question on range of trigonometric functions.

If$u=\left\{\sqrt{{a}^{2}{\mathrm{cos}}^{2}\alpha +{b}^{2}{\mathrm{sin}}^{2}\alpha}\right\}+\left\{\sqrt{{a}^{2}{\mathrm{sin}}^{2}\alpha +{b}^{2}{\mathrm{cos}}^{2}\alpha}\right\}$ , find the difference between the maximum and minimum value of $u}^{2$

I tried squaring the expression on both sides but i am ending up with some complex expression, i.e,$a}^{2}+{b}^{2}+2\mathrm{sin}\alpha \mathrm{cos}\alpha \sqrt{{({a}^{2}-{b}^{2})}^{2}+\frac{{a}^{2}{b}^{2}}{{\mathrm{sin}}^{2}\alpha {\mathrm{cos}}^{2}\alpha}$

If

I tried squaring the expression on both sides but i am ending up with some complex expression, i.e,