Relative extrema of multivariables: f(x,y)= (xy)/7 find critical points and relative extrema, given an open region.

Question
Multivariable functions
asked 2020-10-27
Relative extrema of multivariables:
\(\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{{x}{y}}}{{7}}\)
find critical points and relative extrema, given an open region.

Answers (1)

2020-10-28
We have, \(\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{{x}{y}}}{{7}}\)
To find the critical point:
Find the partial derivative and equate to zero:
Now,
Differntiate f(x,y) with respect to x and equate to zero
\(\displaystyle{{f}_{{x}}{\left({x},{y}\right)}}=\frac{{y}}{{7}}={0}\)
\(\displaystyle\Rightarrow{y}={0}\)
Differntiate f(x,y) with respect to y and equate to zero
\(\displaystyle{{f}_{{y}}{\left({x},{y}\right)}}=\frac{{x}}{{7}}={0}\)
\(\displaystyle\Rightarrow{x}={0}\)
Hence, the critical point is (0,0)
Now we have to find the relative extrema.
Use:
\(\displaystyle{D}{\left({x},{y}\right)}={{f}_{{\times}}{\left({x},{y}\right)}}{{f}_{{{y}{y}}}{\left({x},{y}\right)}}−{\left({{f}_{{{x}{y}}}{\left({x},{y}\right)}}\right)}^{{2}}\)
Find D(0,0):
Now
\(\displaystyle{{f}_{{\times}}{\left({0},{0}\right)}}={0}\)
\(\displaystyle{{f}_{{{y}{y}}}{\left({0},{0}\right)}}={0}\)
\(\displaystyle{{f}_{{{x}{y}}}{\left({0},{0}\right)}}=\frac{{1}}{{7}}\)
Therefore,
\(\displaystyle{D}{\left({0},{0}\right)}={0}\times{0}-{\left(\frac{{1}}{{7}}\right)}^{{2}}=\frac{{1}}{{49}}{<}{0}\)</span>
Hence, by the \(\displaystyle{2}^{{{n}{d}}}\) derivative test:
f(x,y) neither max. nor min at (0,0) which means (0,0) is saddle point.
0

Relevant Questions

asked 2020-11-02
a) Find the function's domain .
b) Find the function's range.
c) Find the boundary of the function's domain.
d) Determine if the domain is an open region, a closed region , or neither.
e) Decide if the domain is bounded or unbounded.
for: \(\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{1}}{{{\left({16}-{x}^{{2}}-{y}^{{2}}\right)}^{{\frac{{1}}{{2}}}}}}\)
asked 2020-12-17
A surface is represented by the following multivariable function,
\(\displaystyle{f{{\left({x},{y}\right)}}}=\frac{{1}}{{3}}{x}^{{3}}+{y}^{{2}}-{2}{x}{y}-{6}{x}-{3}{y}+{4}\)
a) Calculate \(\displaystyle{f}_{{\times}},{f}_{{{y}{x}}},{f}_{{{x}{y}}}{\quad\text{and}\quad}{f}_{{{y}{y}}}\)
b) Calculate coordinates of stationary points.
c) Classify all stationary points.
asked 2021-02-19
Find the critical points of the following multivariable function, and using the Second Derivative Test to find the maxima and minima of the equation below: \(\displaystyle{a}{\left({x},{y}\right)}=\frac{{{8}{x}-{y}}}{{{e}^{{{x}^{{2}}+{y}^{{2}}}}}}\)
asked 2021-02-09
Consider this multivariable function. f(x,y)=xy+2x+y−36
a) What is the value of f(2,−3)?
b) Find all x-values such that f (x,x) = 0
asked 2021-02-02
Write first and second partial derivatives
\(\displaystyle{f{{\left({x},{y}\right)}}}={2}{x}{y}+{9}{x}^{{2}}{y}^{{3}}+{7}{e}^{{{2}{y}}}+{16}\)
a)\(\displaystyle{f}_{{x}}\)
b)\(\displaystyle{f}_{{\times}}\)
c)\(\displaystyle{f}_{{{x}{y}}}\)
d)\(\displaystyle{f}_{{y}}\)
e)\(\displaystyle{f}_{{{y}{y}}}\)
f)\(\displaystyle{f}_{{{y}{x}}}\)
asked 2021-02-18
A surface is represented by the following multivariable function,
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{3}}+{y}^{{3}}-{3}{x}-{3}{y}+{1}\)
Calculate coordinates of stationary points.
asked 2021-01-13
Average value over a multivariable function using triple integrals. Find the average value of \(\displaystyle{F}{\left({x},{y},{z}\right)}={x}^{{2}}+{y}^{{2}}+{z}^{{2}}\) over the cube in the first octant bounded bt the coordinate planes and the planes x=5, y=5, and z=5
asked 2021-03-02
COnsider the multivariable function \(\displaystyle{g{{\left({x},{y}\right)}}}={x}^{{2}}-{3}{y}^{{4}}{x}^{{2}}+{\sin{{\left({x}{y}\right)}}}\). Find the following partial derivatives: \(\displaystyle{g}_{{x}}.{g}_{{y}},{g}_{{{x}{y}}},{g{{\left(\times\right)}}},{g{{\left({y}{y}\right)}}}\).
asked 2020-11-27
Comsider this, multivariable fucntion
\(\displaystyle{f{{\left({x},{y}\right)}}}={3}{x}{y}-{x}^{{2}}+{5}{y}^{{2}}-{25}\)
a)What is the value of f(-1,3)?
b)Find all x-values such that f(x,x)=0
asked 2020-11-20
Consider this multivariable function. \(\displaystyle{f{{\left({x},{y}\right)}}}={y}{e}^{{{3}{x}}}+{y}^{{2}}\)
a) Find \(\displaystyle{{f}_{{y}}{\left({x},{y}\right)}}\)
b) What is value of \(\displaystyle{{f}_{{\times}}{\left({0},{3}\right)}}\)?
...