 # We have the expression 13 sin &#x2061;<!-- ⁡ --> [ tan &#x2212;<! Rebecca Villa 2022-07-09 Answered
We have the expression $13\mathrm{sin}\left[{\mathrm{tan}}^{-1}\left(\frac{12}{5}\right)\right]$.
Apparently the answer is 12, and I have to simplify it, and I'm assuming it means I have to show it's 12, without using a calculator.
Normally I show my own work in the questions, but in this case I have absolutely no clue how to. The only thing I know that might help is that $\mathrm{tan}\left(x\right)=\frac{\mathrm{sin}\left(x\right)}{\mathrm{cos}\left(x\right)}$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Sanaa Hinton
There is a right triangle with side lengths 5, 12 and 13. Draw this triangle, and choose one of the two non-right angles t for which
$\mathrm{tan}t=\frac{12}{5}$
Recall that the tangent is the opposite side over the adjacent side.
###### Not exactly what you’re looking for? Ximena Skinner
Let ${\mathrm{tan}}^{-1}\frac{12}{5}=\theta$
$\phantom{\rule{thickmathspace}{0ex}}⟹\phantom{\rule{thickmathspace}{0ex}}\left(i\right)\mathrm{tan}\theta =\frac{12}{5}$
and $\left(ii\right)-\frac{\pi }{2}\le \theta \le \frac{\pi }{2}$
$\phantom{\rule{thickmathspace}{0ex}}⟹\phantom{\rule{thickmathspace}{0ex}}\mathrm{cos}\theta \ge 0$
$\phantom{\rule{thickmathspace}{0ex}}⟹\phantom{\rule{thickmathspace}{0ex}}\mathrm{cos}\theta =\frac{1}{\mathrm{sec}\theta }=+\frac{1}{\sqrt{1+{\mathrm{tan}}^{2}\theta }}=\cdots$
$\phantom{\rule{thickmathspace}{0ex}}⟹\phantom{\rule{thickmathspace}{0ex}}\mathrm{sin}\theta =\mathrm{tan}\theta \cdot \mathrm{cos}\theta =\cdots$