Boxplot: whiskers and outliers doubt

I have a doubt on boxplot.

I'll expose my knowledge and then my doubt.

$x=\{{x}_{1},{x}_{2}...{x}_{n}\}$: the set of samples

${q}_{1}$,${q}_{3}$: the first and third quartiles

${w}_{l}$,${w}_{u}$: the lower and upper whiskers

$IQR={q}_{3}-{q}_{1}$

box extends from ${q}_{1}$ to ${q}_{3}$

${w}_{l}=max(min(x),{q}_{1}-1.5\cdot IQR)$

${w}_{u}=min(max(x),{q}_{3}+1.5\cdot IQR)$

$outliers=\{{x}_{i}\in x\phantom{\rule{thickmathspace}{0ex}}|\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}{x}_{i}<{w}_{l}\vee {x}_{i}>{w}_{u}\}$

Observations:

$\text{whiskers' distance from box are not symmetric}\phantom{\rule{0ex}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}({w}_{l}=min(x)\vee {w}_{u}=max(x))$

${w}_{u}-{q}_{3}<{q}_{1}-{w}_{l}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\u27f9\phantom{\rule{thickmathspace}{0ex}}\nexists {x}_{i}:{x}_{i}\in outliers\wedge {x}_{i}>{w}_{u}$

${w}_{u}-{q}_{3}>{q}_{1}-{w}_{l}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\u27f9\phantom{\rule{thickmathspace}{0ex}}\nexists {x}_{i}:{x}_{i}\in outliers\wedge {x}_{i}<{w}_{l}$

My doubt: if all what I exposed is correct, how do you explain the presence of outliers in this speed of light boxplot (third experiment, lower outliers) and in this plot (see wednesday, lower outliers)?

In the case my reasoning is wrong, please provide a simple numeric counterexample.

I have a doubt on boxplot.

I'll expose my knowledge and then my doubt.

$x=\{{x}_{1},{x}_{2}...{x}_{n}\}$: the set of samples

${q}_{1}$,${q}_{3}$: the first and third quartiles

${w}_{l}$,${w}_{u}$: the lower and upper whiskers

$IQR={q}_{3}-{q}_{1}$

box extends from ${q}_{1}$ to ${q}_{3}$

${w}_{l}=max(min(x),{q}_{1}-1.5\cdot IQR)$

${w}_{u}=min(max(x),{q}_{3}+1.5\cdot IQR)$

$outliers=\{{x}_{i}\in x\phantom{\rule{thickmathspace}{0ex}}|\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}{x}_{i}<{w}_{l}\vee {x}_{i}>{w}_{u}\}$

Observations:

$\text{whiskers' distance from box are not symmetric}\phantom{\rule{0ex}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}({w}_{l}=min(x)\vee {w}_{u}=max(x))$

${w}_{u}-{q}_{3}<{q}_{1}-{w}_{l}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\u27f9\phantom{\rule{thickmathspace}{0ex}}\nexists {x}_{i}:{x}_{i}\in outliers\wedge {x}_{i}>{w}_{u}$

${w}_{u}-{q}_{3}>{q}_{1}-{w}_{l}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thickmathspace}{0ex}}\u27f9\phantom{\rule{thickmathspace}{0ex}}\nexists {x}_{i}:{x}_{i}\in outliers\wedge {x}_{i}<{w}_{l}$

My doubt: if all what I exposed is correct, how do you explain the presence of outliers in this speed of light boxplot (third experiment, lower outliers) and in this plot (see wednesday, lower outliers)?

In the case my reasoning is wrong, please provide a simple numeric counterexample.