Find the following matrices:

a)

(b)

(c)

Ayaana Buck
2021-03-07
Answered

Find the following matrices:

a)

(b)

(c)

You can still ask an expert for help

Elberte

Answered 2021-03-08
Author has **95** answers

Given,

$A=\left[\begin{array}{ccc}2& -10& -2\\ 14& 12& 10\\ 4& -2& 2\end{array}\right],B=\left[\begin{array}{ccc}6& 10& -2\\ 0& -12& -4\\ -5& 2& -2\end{array}\right]$

a)$A+B=\left[\begin{array}{ccc}2& -10& -2\\ 14& 12& 10\\ 4& -2& 2\end{array}\right]+\left[\begin{array}{ccc}6& 10& -2\\ 0& -12& -4\\ -5& 2& -2\end{array}\right]$

$=\left[\begin{array}{ccc}2+6& -10+10& -2-2\\ 14+0& 12-12& 10-4\\ 4-5& -2+2& 2-2\end{array}\right]$

$=\left[\begin{array}{ccc}8& 0& -4\\ 14& 0& 6\\ -1& 0& 0\end{array}\right]$

Step 2

b)$A-B=\left[\begin{array}{ccc}2& -10& -2\\ 14& 12& 10\\ 4& -2& 2\end{array}\right]-\left[\begin{array}{ccc}6& 10& -2\\ 0& -12& -4\\ -5& 2& -2\end{array}\right]$

$=\left[\begin{array}{ccc}2-6& -10-10& -2-(-2)\\ 14-0& 12-(-12)& 10-(-4)\\ 4-(-5)& -2-2& 2-(-2)\end{array}\right]$

$=\left[\begin{array}{ccc}-4& -20& 0\\ 14& 24& 14\\ 9& -4& 4\end{array}\right]$

c)$-4A=-4\left[\begin{array}{ccc}2& -10& -2\\ 14& 12& 10\\ 4& -2& 2\end{array}\right]$

$=\left[\begin{array}{ccc}-4(2)& -4(-10)& -4(-2)\\ -4(14)& -4(12)& -4(10)\\ -4(4)& -4(-2)& -4(2)\end{array}\right]$

$=\left[\begin{array}{ccc}-8& 40& 8\\ -56& -48& -40\\ -16& 8& -8\end{array}\right]$

a)

Step 2

b)

c)

Jeffrey Jordon

Answered 2022-01-27
Author has **2027** answers

Answer is given below (on video)

Jeffrey Jordon

Answered 2022-01-27
Author has **2027** answers

Answer is given below (on video)

asked 2021-01-31

Find a basis for the space of $2\times 2$ diagonal matrices.

$\text{Basis}=\{\left[\begin{array}{cc}& \\ & \end{array}\right],\left[\begin{array}{cc}& \\ & \end{array}\right]\}$

asked 2021-02-08

Let B be a 4x4 matrix to which we apply the following operations:

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1 (column dimension is reduced by 1).

(a) Write the result as a product of eight matrices.

(b) Write it again as a product of ABC (same B) of three matrices.

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1 (column dimension is reduced by 1).

(a) Write the result as a product of eight matrices.

(b) Write it again as a product of ABC (same B) of three matrices.

asked 2020-11-10

The reduced row echelon form of the matrix A is

$\left[\begin{array}{ccc}1& 2& 0\\ 0& 0& 1\\ 0& 0& 0\end{array}\right]$

Find three different such matrices A. Explain how you determined your matrices.

Find three different such matrices A. Explain how you determined your matrices.

asked 2022-04-04

$\left(\begin{array}{cc}1& 2\\ 3& -2\end{array}\right)+\left(\begin{array}{cc}-6& -5\\ -2& -2\end{array}\right)=$ ?

asked 2022-05-07

What is $\left(\begin{array}{cc}-3& 2\\ -6& 5\end{array}\right)$ plus $\left(\begin{array}{cc}6& -3\\ -6& 2\end{array}\right)$ ?

asked 2020-12-12

verify that $(AB{)}^{T}={B}^{T}{A}^{T}$

If$A=\left[\begin{array}{cc}2& 1\\ 6& 3\\ -2& 4\end{array}\right]\text{and}B=\left[\begin{array}{cc}2& 4\\ 1& 6\end{array}\right]$

If

asked 2021-03-26

One of the five given matrices represents an orthogonal projection onto a line and another represents a reflection about line. Identify both and briefly justify your choice.