Proving ${\int}_{0}^{1}\frac{\mathrm{sin}\pi x}{{x}^{2}+1}dx=\frac{2}{\pi ({\mu}_{1}^{2}+1)}=\frac{\pi}{4}\mathrm{sin}\pi {\mu}_{2}$ for certain ${\mu}_{1},{\mu}_{2}\in [0,1]$

Wade Bullock
2022-07-01
Answered

Proving ${\int}_{0}^{1}\frac{\mathrm{sin}\pi x}{{x}^{2}+1}dx=\frac{2}{\pi ({\mu}_{1}^{2}+1)}=\frac{\pi}{4}\mathrm{sin}\pi {\mu}_{2}$ for certain ${\mu}_{1},{\mu}_{2}\in [0,1]$

You can still ask an expert for help

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-05-02

m is a positive integer.

asked 2022-01-15

Using the identity $\mathrm{tan}\theta =\mathrm{tan}(\theta -{180}^{\circ})$ to find values of $\theta$ such that $\mathrm{tan}\theta ={\mathrm{tan}20}^{\circ}$

asked 2022-03-31

Prove that

$\mathrm{sin}\left({12}^{\circ}\right)\mathrm{sin}\left({48}^{\circ}\right)\mathrm{sin}\left({54}^{\circ}\right)=\frac{1}{8}$

asked 2022-04-05

Evaluate without using a calculator:

$\mathrm{tan}\left(2{\mathrm{sin}}^{-1}\left(\frac{\sqrt{5}}{5}\right)\right)$

asked 2022-04-29

Prove identity: $\mathrm{sin}\alpha =\frac{2\mathrm{tan}\frac{\alpha}{2}}{1+{\mathrm{tan}}^{2}\frac{\alpha}{2}}$

I am having a problem proving this identity. I write tan like$\frac{\mathrm{sin}\frac{\alpha}{2}}{\mathrm{cos}\frac{\alpha}{2}}$ and the squared one in the same way. I eventually get

$\frac{2\mathrm{sin}\frac{\alpha}{2}\mathrm{cos}\frac{\alpha}{2}}{{\mathrm{sin}}^{2}\frac{\alpha}{2}+{\mathrm{cos}}^{2}\frac{\alpha}{2}}$

I am having a problem proving this identity. I write tan like

asked 2022-04-07

Find the value of $10{\mathrm{sin}}^{4}\theta +15{\mathrm{cos}}^{4}\theta =6$