I am trying to solve a first order differential equation with the condition that g ( y

Jonathan Miles

Jonathan Miles

Answered question

2022-07-01

I am trying to solve a first order differential equation with the condition that g ( y ) = 0 if y = 0:
a g ( c y ) + b g ( e y ) = α (1) g ( 0 ) = 0 ,
where parameters a,b,c,e are real nonzero constants; α is a complex constant; function g ( y ) : R C is a function mapping from real number y to a complex number. The goal is to solve for function g ( ). This is what I have done. Solve this differential equation by integrating with respect to y:
a c g ( c y ) + b e g ( e y ) = α y + β ,
where β is another complex constant. Plugging in y=0 and using the fact that g(0)=0, we have β = 0. Therefore, we have
a c g ( c y ) + b e g ( e y ) = α y .
The background of this problem is Cauchy functional equation, so my conjecture is one solution could be g ( y ) = γ y. Plugging in g ( y ) = γ y, I get γ = α a + b , which implies that one solution is g ( y ) = α a + b y. Then, I move on to show uniqueness. I define a vector-valued function h ( h 1 , h 2 ) T such that
h 1 ( y ) = a c g 1 ( c y ) + b e g 1 ( e y ) h 2 ( y ) = a c g 2 ( c y ) + b e g 2 ( e y ) ,
where g ( y ) g 1 ( y ) + i g 2 ( y ). Then, I rewrite this differential equation as
h ( y ) = α (2) h ( 0 ) = 0 ,
where α ( α 1 , i α 2 ) T . By the uniqueness theorem of first order differential equation, solution h(y) is unique. I have two questions. First, I think equation (1) and (2) should be equivalent. However, it seems that equation (1) can imply equation (2) but equation (2) may not imply equation (1). This is because h(0)=0 may imply either g 1 ( 0 ) = 0 , g 2 ( 0 ) = 0 or a c + b e = 0. Second, I have only proved that h(y) is unique. How should I proceed to show g(y) is also unique.

Answer & Explanation

jugf5

jugf5

Beginner2022-07-02Added 18 answers

For people who are interested in my question, I got an answer from a friend. This is a smart way to show uniqueness of solution.
a g ( c y ) + b g ( e y ) = α
Define f ( ) g ( ):
a f ( c y ) + b f ( e y ) = α
View this equation as an infinite system of algebraic equations in unknowns (a,b). For example,
a f ( 0 ) + b f ( 0 ) = α a f ( c ) + b f ( e ) = α a f ( 2 c ) + b f ( 2 e ) = α
Since a and b are non-zero, this system of equations is solvable if and only if function f ( ) is a constant function. Thus, function g ( ) is a constant function which further implies that function g ( y ) = β y where β is a complex constant.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?