Decide whether the composite functions, [email protected] and [email protected], are equal to x. f(x)=x^3+9 g(x)=root(3)(x-9)

Question
Composite functions
asked 2020-10-27
Decide whether the composite functions, \(\displaystyle{f}\circ{g}\) and \(\displaystyle{g}\circ{f}\), are equal to x.
\(\displaystyle{f{{\left({x}\right)}}}={x}^{{3}}+{9}\)
\(\displaystyle{g{{\left({x}\right)}}}={\sqrt[{{3}}]{{{x}-{9}}}}\)

Answers (1)

2020-10-28
To find the composite function we need to plug-in function in place of the variable. Mathematically,
\(\displaystyle{f}\circ{g}={f{{\left({g{{\left({x}\right)}}}\right)}}}\)
\(\displaystyle{g}\circ{f}={g{{\left({f{{\left({x}\right)}}}\right)}}}\)
Therefore, the composite functions are,
\(\displaystyle{f}\circ{g}={f{{\left({\sqrt[{{3}}]{{{x}-{9}}}}\right)}}}\)
\(\displaystyle={\sqrt[{{3}}]{{{x}-{9}}}}+{9}\)
\(\displaystyle={x}-{9}+{9}\)
\(\displaystyle={x}\)
\(\displaystyle{g}\circ{f}={g{{\left({f{{\left({x}\right)}}}\right)}}}\)
\(\displaystyle={\sqrt[{{3}}]{{{\left({x}^{{3}}+{9}\right)}-{9}}}}\)
\(\displaystyle={\sqrt[{{3}}]{{{x}^{{3}}}}}\)
=x
Hence, both composite functions are equal to zero.
0

Relevant Questions

asked 2021-02-25
Find and simplify in expression for the idicated composite functions. State the domain using interval notation.
\(\displaystyle{f{{\left({x}\right)}}}={3}{x}-{1}\)
\(\displaystyle{g{{\left({x}\right)}}}=\frac{{1}}{{{x}+{3}}}\)
Find \(\displaystyle{\left({g}\circ{f}\right)}{\left({x}\right)}\)
asked 2021-02-24
For f(x)=6/x and g(x)=6/x, find the following functions. a) ([email protected])(x) b) ([email protected])(x) c) ([email protected])(7) d) ([email protected])(7)
asked 2020-10-18
Find the composite functions \(\displaystyle{f}\circ{g}\) and \(\displaystyle{g}\circ{f}\). Find the domain of each composite function. Are the two composite functions equal?
\(\displaystyle{f{{\left({x}\right)}}}={x}^{{2}}−{1}\)
g(x) = −x
asked 2021-02-25
Find the composite functions \(\displaystyle{f}\circ{g}\) and \(\displaystyle{g}\circ{f}\). Find the domain of each composite function. Are the two composite functions equal
f(x) = 3x + 1
g(x) = −x
asked 2020-11-26
Given
\(\displaystyle{f{{\left({x}\right)}}}={2}-{x}{2},{g{{\left({x}\right)}}}=\sqrt{{{x}+{2}}}\)
\(\displaystyle{f{{\left({x}\right)}}}=\sqrt{{{x}}},{g{{\left({x}\right)}}}=\sqrt{{{1}-{x}}}\)
(a) write formulas for \(\displaystyle{f}\circ{g}\) and \(\displaystyle{g}\circ{f}\) and find the
(b) domain and
(c) range of each.
asked 2020-12-25
Let f(x) = \(\displaystyle{4}{x}^{{2}}–{6}\) and \(\displaystyle{g{{\left({x}\right)}}}={x}–{2}.\)
(a) Find the composite function \(\displaystyle{\left({f}\circ{g}\right)}{\left({x}\right)}\) and simplify. Show work.
(b) Find \(\displaystyle{\left({f}\circ{g}\right)}{\left(−{1}\right)}\). Show work.
asked 2020-11-08
The regular price of a computer is x dollars. Let f(x) = x - 400 and g(x) = 0.75x. Solve,
a. Describe what the functions f and g model in terms of the price of the computer.
b. Find \(\displaystyle{\left({f}\circ{g}\right)}{\left({x}\right)}\) and describe what this models in terms of the price of the computer.
c. Repeat part (b) for \(\displaystyle{\left({g}\circ{f}\right)}{\left({x}\right)}\).
d. Which composite function models the greater discount on the computer, \(\displaystyle{f}\circ{g}\) or \(\displaystyle{g}\circ{f}\)?
asked 2020-11-24
Find the domain of the coposite function [email protected]

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{5}}{{{x}+{9}}}\)
g(x)=x+6
asked 2021-02-06
For the composite function, identify an inside function and an oposite fnction abd write the derivative with respect to x of the composite function. (The function is of the form f(x)=g(h(x)). Use non-identity dunctions for g(h) and h(x).)
\(\displaystyle{f{{\left({x}\right)}}}={71}{e}^{{{0.2}{x}}}\)
{g(h), h(x)} = ?
f'(x) = ?"
asked 2020-12-24
Let \(\displaystyle{f{{\left({x}\right)}}}={x}^{{2}}+{9}{x}\) and \(\displaystyle{g{{\left({x}\right)}}}={9}{x}+{8}\) perform the composition or operation indicated below \(\displaystyle{\left({f}\circ{g}\right)}{\left({5}\right)}\) simplify the answer
...