Critical Thinking How do frequency tables, relative frequencies, and histograms showing relative frequencies help us understand sampling distributions?

texelaare 2020-11-05 Answered
Critical Thinking How do frequency tables, relative frequencies, and histograms showing relative frequencies help us understand sampling distributions?
You can still ask an expert for help

Want to know more about Sampling distributions?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

stuth1
Answered 2020-11-06 Author has 97 answers
The frequency tables, relative frequencies, and histograms all show the relative frequencies of the distribution. They display the distribution using the tables or graphs that approximately visualizes the sampling distribution of the population.
Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-03-09
Which of the following is true about the sampling distribution of means?
A. Shape of the sampling distribution of means is always the same shape as the population distribution, no matter what the sample size is.
B. Sampling distributions of means are always nearly normal.
C. Sampling distributions of means get closer to normality as the sample size increases.
D. Sampling distribution of the mean is always right skewed since means cannot be smaller than 0.
asked 2021-02-12
Which of the following is true about sampling distributions?
-Shape of the sampling distribution is always the same shape as the population distribution, no matter what the sample size is.
-Sampling distributions are always nearly normal.
-Sampling distribution of the mean is always right skewed since means cannot be smaller than 0.
-Sampling distributions get closer to normality as the sample size increases.
asked 2021-03-04
Which of the following statements about the sampling distribution of the sample mean is incorrect?
(a) The standard deviation of the sampling distribution will decrease as the sample size increases.
(b) The standard deviation of the sampling distribution is a measure of the variability of the sample mean among repeated samples.
(c) The sample mean is an unbiased estimator of the population mean.
(d) The sampling distribution shows how the sample mean will vary in repeated samples.
(e) The sampling distribution shows how the sample was distributed around the sample mean.
asked 2020-12-07
Which of the following are possible examples of sampling distributions? (Select all that apply.)
mean trout lengths based on samples of size 5
average SAT score of a sample of high school students
average male height based on samples of size 30
heights of college students at a sampled universit
yall mean trout lengths in a sampled lake
asked 2020-12-12
Check whether the standard error of the sampling distributions of p obtained in part(a) and part(b) are different.
asked 2022-01-31
the row of numbers shown below to generate 12 random numbers between 01 and 99 09075 11123 14740 39704 88198 93469 52264 39270
asked 2021-02-09
Which of the following are correct general statements about the Central Limit Theorem?
(Select all that apply. To be marked correct: All of the correct selections must be made, with no incorrect selections.)
Question 3 options:
Its name is often abbreviated by the three capital letters CLT.
The accuracy of the approximation it provides, improves as the sample size n increases.
The word Central within its name, is meant to signify its role of central importance in the mathematics of probability and statistics.
It is a special example of the particular type of theorems in mathematics, which are called Limit Theorems.
It specifies the specific standard deviation of the curve which approximates certain sampling distributions.
The accuracy of the approximation it provides, improves when the trial success proportion p is closer to 50%.
It specifies the specific shape of the curve which approximates certain sampling distributions.
It specifies the specific mean of the curve which approximates certain sampling distributions.