# Find, correct to four decimal places, the length of the curve of intersection of the cylinder 4x^2 + y^2 = 4 and the plane x + y + z = 5. Question
Parametric equations, polar coordinates, and vector-v Find, correct to four decimal places, the length of the curve of intersection of the cylinder $$\displaystyle{4}{x}^{{2}}+{y}^{{2}}={4}$$ and the plane x + y + z = 5. 2021-01-09  ### Relevant Questions The rectangular coordinates of a point are given $$(-5, 2)$$ . Use a graphing utility in radian mode to find polar coordinates of each point to three decimal places. Find the exact length of the parametric curve $$\displaystyle{0}{<}{t}{<}\pi$$
$$\displaystyle{x}={\cos{\cdot}}{e}^{{t}}$$
$$\displaystyle{y}={\sin{\cdot}}{e}^{{t}}$$ Given $$r′(t)=⟨\sec2t,−\sint⟩$$, find the arc length of the curve r(t) on the interval $$[−π/3].$$ Given $$\displaystyle{r}′{\left({t}\right)}=⟨{\sec{{2}}}{t},−{\sin{{t}}}⟩$$, find the arc length of the curve r(t) on the interval $$\displaystyle{\left[− asked 2021-01-17 Find the solution of limit \(\displaystyle\lim_{{{\left({x},{y}\right)}\rightarrow{0},{0}}}\frac{{\sqrt{{{x}^{2}+{y}^{2}}}}}{{{x}^{2}+{y}^{2}}}$$ by using the polar coordinates system. The rectangular coordinates of a point are (4, −4). Plot the point and find two sets of polar coordinates for the point for $$0 < 2$$. Convert from polar to rectangular coordinates: $$(2,(\pi/2))\Rightarrow (x,y)$$  Polar coordinates of a point are given $$(4, 90^\circ)$$. Find the rectangular coordinates of each point. 