I need to find the limits of the following sequences

$\frac{(5n!+{n}^{9}-{2}^{n})}{({2}^{n}+n!+{n}^{100})}$

$\frac{(5n!+{n}^{9}-{2}^{n})}{({2}^{n}+n!+{n}^{100})}$

gvaldytist
2022-07-01
Answered

I need to find the limits of the following sequences

$\frac{(5n!+{n}^{9}-{2}^{n})}{({2}^{n}+n!+{n}^{100})}$

$\frac{(5n!+{n}^{9}-{2}^{n})}{({2}^{n}+n!+{n}^{100})}$

You can still ask an expert for help

asked 2022-01-01

Looking to prove that the following series converges conditionally

$\sum _{n=1}^{\mathrm{\infty}}\frac{{(-1)}^{n+1}{(1+n)}^{\frac{1}{n}}}{n}$

asked 2021-12-26

Using Taylor expansion check if series :

$\sum _{n=1}^{\mathrm{\infty}}\sqrt{n}(\mathrm{arctan}(n+1)-\mathrm{arctan}n)$

converges.

converges.

asked 2022-03-19

Calculate sum of an infinite series

$\sum _{n=1}^{\mathrm{\infty}}{(-1)}^{n-1}{n}^{2}{x}^{n}$

asked 2022-09-17

Two number have a sum of 124 and a difference of 46. Find the humbers

asked 2022-01-24

What is the value of

$\sum _{k=1}^{\mathrm{\infty}}\frac{1}{(3k+1)(3k+2)}$

asked 2022-01-23

I want to try and evaluate this interesting sum:

$\sum _{n=1}^{\mathrm{\infty}}\frac{1}{\mathrm{\Gamma}(n+s)}$

where$0\le s<q$

where

asked 2022-05-19

The task is to find a sum of multiple values $\mathrm{cos}$ and $\mathrm{sin}$ to determine the value of

$\sum _{n=1}^{\mathrm{\infty}}(-1{)}^{n}\frac{n}{(2n+2)!}$

$\sum _{n=1}^{\mathrm{\infty}}(-1{)}^{n}\frac{n}{(2n+2)!}$