Triple integration ${\iiint}_{{x}^{2}+{y}^{2}+{z}^{2}\le 2z}{x}^{2}{y}^{2}dxdydz$

xonycutieoxl1
2022-06-29
Answered

Triple integration ${\iiint}_{{x}^{2}+{y}^{2}+{z}^{2}\le 2z}{x}^{2}{y}^{2}dxdydz$

You can still ask an expert for help

Blaine Foster

Answered 2022-06-30
Author has **33** answers

It's better to use spherical coordinates

The region is ${x}^{2}+{y}^{2}+{z}^{2}\le 2z$ , i.e., ${x}^{2}+{y}^{2}+(z-1{)}^{2}\le 1$

So we can define the spherical coordinates $r,\theta ,\varphi $ such that

$x=r\mathrm{sin}\theta \mathrm{cos}\varphi $

$y=r\mathrm{sin}\theta \mathrm{sin}\varphi $

$z=1+r\mathrm{cos}\theta $

And the integral becomes

$I={\displaystyle {\int}_{r=0}^{1}{\int}_{\theta =0}^{\pi}{\int}_{\varphi =0}^{2\pi}{r}^{6}{\mathrm{sin}}^{5}\theta {\mathrm{cos}}^{2}\varphi {\mathrm{sin}}^{2}\varphi \text{d}\varphi \text{d}\theta \text{d}r}$

Integrating with respect r and with respect to $\varphi $ is straight forward, and the integral reduces to

$I={\displaystyle \frac{\pi}{28}}{\displaystyle {\int}_{\theta =0}^{\pi}si{n}^{5}\theta \text{d}\theta}$

The integral with respect to $\theta $ is solved using the substitution $u=\mathrm{cos}\theta $, then

$\int {\mathrm{sin}}^{5}\theta \text{d}\theta =-\int (1-{u}^{2}{)}^{2}du=-(u-{\displaystyle \frac{2}{3}}{u}^{3}+{\displaystyle \frac{{u}^{5}}{5}})$

Hence,

$I={\displaystyle \frac{4\pi}{105}}$

The region is ${x}^{2}+{y}^{2}+{z}^{2}\le 2z$ , i.e., ${x}^{2}+{y}^{2}+(z-1{)}^{2}\le 1$

So we can define the spherical coordinates $r,\theta ,\varphi $ such that

$x=r\mathrm{sin}\theta \mathrm{cos}\varphi $

$y=r\mathrm{sin}\theta \mathrm{sin}\varphi $

$z=1+r\mathrm{cos}\theta $

And the integral becomes

$I={\displaystyle {\int}_{r=0}^{1}{\int}_{\theta =0}^{\pi}{\int}_{\varphi =0}^{2\pi}{r}^{6}{\mathrm{sin}}^{5}\theta {\mathrm{cos}}^{2}\varphi {\mathrm{sin}}^{2}\varphi \text{d}\varphi \text{d}\theta \text{d}r}$

Integrating with respect r and with respect to $\varphi $ is straight forward, and the integral reduces to

$I={\displaystyle \frac{\pi}{28}}{\displaystyle {\int}_{\theta =0}^{\pi}si{n}^{5}\theta \text{d}\theta}$

The integral with respect to $\theta $ is solved using the substitution $u=\mathrm{cos}\theta $, then

$\int {\mathrm{sin}}^{5}\theta \text{d}\theta =-\int (1-{u}^{2}{)}^{2}du=-(u-{\displaystyle \frac{2}{3}}{u}^{3}+{\displaystyle \frac{{u}^{5}}{5}})$

Hence,

$I={\displaystyle \frac{4\pi}{105}}$

asked 2021-02-24

asked 2021-05-11

Evaluate the line integral, where C is the given curve

C xy ds

C:$x={t}^{2},y=2t,0\le t\le 5$

C xy ds

C:

asked 2021-10-14

Use geometry and properties of integrals to evaluate the following definite integrals.

${\int}_{0}^{4}\sqrt{8x-{x}^{2}}dx$

asked 2022-11-20

Prove that

${\int}_{0}^{x}{\int}_{0}^{y}{\int}_{0}^{z}f(t)dtdzdy=\frac{1}{2}{\int}_{0}^{x}(x-t{)}^{2}f(t)dt$

${\int}_{0}^{x}{\int}_{0}^{y}{\int}_{0}^{z}f(t)dtdzdy=\frac{1}{2}{\int}_{0}^{x}(x-t{)}^{2}f(t)dt$

asked 2021-10-15

Evaluate the following integrals. Include absolute values only when needed.

$\int \frac{\mathrm{sin}\left(\mathrm{ln}x\right)}{4x}dx$

asked 2021-10-12

Evaluate the following integrals. Include absolute values only when needed.

$\int}_{e}^{{e}^{2}}\frac{dx}{x{\mathrm{ln}}^{3}x$

asked 2022-07-06

I have to evaluate this integral:

$\int \frac{1-x+{x}^{2}}{x\sqrt{1+x-{x}^{2}}}dx$

$\int \frac{1-x+{x}^{2}}{x\sqrt{1+x-{x}^{2}}}dx$