I was given the following second-order differential equation, y <mrow class="MJX-TeX

Leland Morrow 2022-06-24 Answered
I was given the following second-order differential equation,
y + 2 y + y = g ( t ) ,
and that the solution is y ( t ) = ( 1 + t ) ( 1 + e t ). Using the solution I determined that
g ( t ) = t + 3.
Following from this I transformed this second-order differential equation into a system of first-order differential equations, which is
( x 1 x 2 ) = ( 0 1 1 2 ) ( y y ) + ( 0 t + 3 )
Now I want to perform a single step with Δ t = 1 starting from t=0 with the Forward Euler method and after that with the Backward Euler method. Firstly with the Forward Euler method I use:
w n + 1 = w n + Δ t f ( t n , w n )
and I compute w 0 as
w 0 = ( y ( 0 ) y ( 0 ) ) = ( 2 1 )
so therefore
w 1 = ( 3 0 )
Now I want to perform the Backward Euler method.
w n + 1 = w n + Δ t f ( t n + 1 , w n + 1 )
so
w 1 = ( 2 1 ) + ( 0 1 1 2 ) w 1 + ( 0 4 )
From which i get
w 1 = 1 4 ( 11 3 )
y two results seems to be quite differnt and that gets me to believe that I have made a mistake somewhere. Could someone let me know if they believe this to be correct, or why this could be wrong?
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Answers (1)

Bruno Hughes
Answered 2022-06-25 Author has 25 answers
Note that the second is ( 2.75 , 0.75 ) T . Your results are not that different for a step size of Δ t = 1 and a Lipschitz constant L between 2 and 3. This setup is on the border between barely useful and chaotic, you want L Δ t smaller 1.5 for results that are qualitatively valid, and smaller 0.1 for results that begin to be quantitatively valid.
If you want to get a better intuition of that, repeat the calculation with smaller step sizes 0.5, 0.25, 0.1 (and the correspondingly increased step number) and observe that the error shrinks roughly linearly in the step size.

We have step-by-step solutions for your answer!

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

New questions