simplify fractions with exponent

The given fraction is: $(\frac{a}{b}{)}^{n}\cdot (\frac{b}{c}{)}^{n}\cdot (\frac{c}{a}{)}^{n+1}$

The given solution is: $\frac{c}{a}$

What I have done so far:

$(\frac{a}{b}{)}^{n}\cdot (\frac{b}{c}{)}^{n}\cdot (\frac{c}{a}{)}^{n+1}$ | multiply $\frac{a}{b}$ and $\frac{b}{c}$ because of same exponent

$(\frac{ab}{bc}{)}^{n}\ast (\frac{c}{a}{)}^{n+1}$ | get rid of $b$

$(\frac{a}{c}{)}^{n}\ast (\frac{c}{a}{)}^{n+1}$

Can you please explain how I continue simplifying or what I did wrong? Thanks!

The given fraction is: $(\frac{a}{b}{)}^{n}\cdot (\frac{b}{c}{)}^{n}\cdot (\frac{c}{a}{)}^{n+1}$

The given solution is: $\frac{c}{a}$

What I have done so far:

$(\frac{a}{b}{)}^{n}\cdot (\frac{b}{c}{)}^{n}\cdot (\frac{c}{a}{)}^{n+1}$ | multiply $\frac{a}{b}$ and $\frac{b}{c}$ because of same exponent

$(\frac{ab}{bc}{)}^{n}\ast (\frac{c}{a}{)}^{n+1}$ | get rid of $b$

$(\frac{a}{c}{)}^{n}\ast (\frac{c}{a}{)}^{n+1}$

Can you please explain how I continue simplifying or what I did wrong? Thanks!