I need to find the limit point(s) of the sequence whose general term is given by:

${a}_{n}=\frac{1}{1\cdot n}+\frac{1}{2\cdot (n-1)}+\cdots +\frac{1}{n\cdot 1}$

${a}_{n}=\frac{1}{1\cdot n}+\frac{1}{2\cdot (n-1)}+\cdots +\frac{1}{n\cdot 1}$

Manteo2h
2022-06-27
Answered

I need to find the limit point(s) of the sequence whose general term is given by:

${a}_{n}=\frac{1}{1\cdot n}+\frac{1}{2\cdot (n-1)}+\cdots +\frac{1}{n\cdot 1}$

${a}_{n}=\frac{1}{1\cdot n}+\frac{1}{2\cdot (n-1)}+\cdots +\frac{1}{n\cdot 1}$

You can still ask an expert for help

asked 2020-11-24

Evaluating series. Evaluate the following infinite series or state that the series diverges.

$\sum _{k=1}^{\mathrm{\infty}}\frac{9}{(3k-2)(3k+1)}$

asked 2021-11-14

Write an equivalent series with the index of summation beginning at = 1.

$\sum _{n=0}^{\mathrm{\infty}}{(-1)}^{n}+1(n+1){x}^{n}$

asked 2022-01-24

Find the value of

$1{\mathrm{sin}2}^{\circ}+2{\mathrm{sin}4}^{\circ}+3{\mathrm{sin}6}^{\circ}+\dots +90{\mathrm{sin}180}^{\circ}$

asked 2020-11-08

Find the values of x for which the given geometric series converges. Also, find the sum of the series (as a function of x) for those values of x.

a) Find the values of x for which the given geometric series converges.

b) Find the sum of the series

$\sum _{n=0}^{\mathrm{\infty}}(-\frac{1}{2}{)}^{n}(x-5{)}^{n}$

a) Find the values of x for which the given geometric series converges.

b) Find the sum of the series

asked 2022-02-28

Why is:

$\sum _{k=1}^{\left[\frac{n}{2}\right]}{\mathrm{sin}}^{2}\left((2k-1)\frac{\pi}{n}\right)=\frac{n}{4}$

asked 2022-02-28

Check the convergence or divergence of the series

$\sum _{n=2}^{\mathrm{\infty}}{(-1)}^{n}(\frac{1}{\mathrm{log}n}+\frac{\mathrm{cos}n}{{n}^{2}})$

asked 2022-02-24

Prove:

$\mathrm{cos}\left(\frac{2\pi}{5}\right)+\mathrm{cos}\left(\frac{4\pi}{5}\right)+\mathrm{cos}\left(\frac{6\pi}{5}\right)+\mathrm{cos}\left(\frac{8\pi}{5}\right)=-1$